### Refine

#### Document Type

- Article (reviewed) (2)
- Article (unreviewed) (2)
- Part of a Book (1)

#### Is part of the Bibliography

- yes (5) (remove)

Propagation of acoustic waves is considered in a system consisting of two stiff quarter-spaces connected by a planar soft layer. The two quarter-spaces and the layer form a half-space with a planar surface. In a numerical study, surface waves have been found and analyzed in this system with displacements that are localized not only at the surface, but also in the soft layer. In addition to the semi-analytical finite element method, an alternative approach based on an expansion of the displacement field in a double series of Laguerre functions and Legendre polynomials has been applied.
It is shown that a number of branches of the mode spectrum can be interpreted and remarkably well described by perturbation theory, where the zero-order modes are the wedge waves guided at a rectangular edge of the stiff quarter-spaces or waves guided at the edge of a soft plate with rigid surfaces.
For elastic moduli and densities corresponding to the material combination PMMA–silicone–PMMA, at least one of the branches in the dispersion relation of surface waves trapped in the soft layer exhibits a zero-group velocity point.
Potential applications of these 1D guided surface waves in non-destructive evaluation are discussed.

Among the various types of guided acoustic waves, acoustic wedge waves are non-diffractive and non-dispersive. Both properties make them susceptible to nonlinear effects. Investigations have recently been focused on effects of second-order nonlinearity in connection with anisotropy. The current status of these investigations is reviewed in the context of earlier work on nonlinear properties of two-dimensional guided acoustic waves, in particular surface waves. The role of weak dispersion, leading to solitary waves, is also discussed. For anti-symmetric flexural wedge waves propagating in isotropic media or in anisotropic media with reflection symmetry with respect to the wedge’s mid-plane, an evolution equation is derived that accounts for an effective third-order nonlinearity of acoustic wedge waves. For the kernel functions occurring in the nonlinear terms of this equation, expressions in terms of overlap integrals with Laguerre functions are provided, which allow for their quantitative numerical evaluation. First numerical results for the efficiency of third-harmonic generation of flexural wedge waves are presented.