Refine
Document Type
- Conference Proceeding (14)
- Article (reviewed) (2)
Is part of the Bibliography
- yes (16) (remove)
Keywords
- Air Pollution (1)
- Entfernung (1)
- Environmental monitoring (1)
- Geschwindigkeit (1)
- Schienenfahrzeug (1)
- Wirbelstromsensor (1)
- time warping (1)
The paper describes a systematic approach for a precise short-time cloud coverage prediction based on an optical system. We present a distinct pre-processing stage that uses a model based clear sky simulation to enhance the cloud segmentation in the images. The images are based on a sky imager system with fish-eye lens optic to cover a maximum area. After a calibration step, the image is rectified to enable linear prediction of cloud movement. In a subsequent step, the clear sky model is estimated on actual high dynamic range images and combined with a threshold based approach to segment clouds from sky. In the final stage, a multi hypothesis linear tracking framework estimates cloud movement, velocity and possible coverage of a given photovoltaic power station. We employ a Kalman filter framework that efficiently operates on the rectified images. The evaluation on real world data suggests high coverage prediction accuracy above 75%.
The precise positioning of mobile systems is a prerequisite for any autonomous behavior, in an industrial environment as well as for field robotics. The paper describes the set up for an experimental platform and its use for the evaluation of simultaneous localization and mapping (SLAM) algorithms. Two approaches are compared. First, a local method based on point cloud matching and integration of inertial measurement units is evaluated. Subsequent matching makes it possible to create a three-dimensional point cloud that can be used as a map in subsequent runs. The second approach is a full SLAM algorithm, based on graph relaxation models, incorporating the full sensor suite of odometry, inertial sensors, and 3D laser scan data.
A novel approach for synchronization and calibration of a camera and an inertial measurement unit (IMU) in the research-oriented visual-inertial mapping-and localization-framework maplab is presented. Mapping and localization are based on detecting different features in the environment. In addition to the possibility of creating single-case maps, the included algorithms allow merging maps to increase mapping accuracy and obtain large-scale maps. Furthermore, the algorithms can be used to optimize the collected data. The preliminary results show that after appropriate calibration and synchronization maplab can be used efficiently for mapping, especially in rooms and small building environments.
In this contribution, we propose an system setup for the detection andclassification of objects in autonomous driving applications. The recognition algo-rithm is based upon deep neural networks, operating in the 2D image domain. Theresults are combined with data of a stereo camera system to finally incorporatethe 3D object information into our mapping framework. The detection systemis locally running upon the onboard CPU of the vehicle. Several network archi-tectures are implemented and evaluated with respect to accuracy and run-timedemands for the given camera and hardware setup.
Mit der Implementierung sowie einer anschließenden aussagekräftigen Evaluierung, soll das, visuelle-inertiale Kartierungs- und Lokalisierungssystem maplab analysiert werden. Hierbei basiert die Kartierung bzw. Lokalisierung auf der Detektion von Umgebungsmerkmalen. Neben der Möglichkeit der Kartenerstellung besteht ferner die Option, mehrere Karten zu fusionieren und somit weitreichende Gebiete zu kartieren sowie für weitere Datenauswertungen zu nutzen. Aufgrund der Durchführung und Bewertung der Ergebnisse in unterschiedlichen Anwendungsszenarien zeigt sich, dass maplab besonders zur Kartierung von Räumen bzw. kleinen Gebäudekomplexen geeignet ist. Die Möglichkeit der Kartenfusionierung bietet weiterhin die Option, den Informationsgehalt von Karten zu erhöhen, welches die Effektivität für eine anschließende Lokalisierung steigert. Bei wachsender Kartierungsgröße hingegen zeigt sich jedoch eine Vergrößerung geometrischer Inkonsistenzen.
Bei dem vorgestellten Ansatz soll der Auftreffpunkt des Pfeils durch die Kreuzkorrelation von Audio-Signalen bestimmt werden. Das Auftreffen des Pfeils erzeugt ein charakteristisches Geräusch, welches von mehreren Mikrofonen in bestimmter Anordnung um die Dartscheibe herum in elektrische Signale umgewandelt wird. Mithilfe der Schallgeschwindigkeit und den Zeitdifferenzen, welche die Schallwelle zu den einzelnen Mikrofonen benötigt soll dann der Auftreffpunkt berechnet werden.