Refine
Document Type
- Article (reviewed) (10) (remove)
Keywords
- Druck (2)
- 3d print (1)
- CAD (1)
- Computer Aided Design (CAD) (1)
- Dimension 3 (1)
- Fertigungsautomation (1)
- Freeware (1)
- Götz of the Iron Hand (1)
- Handprothese, Funktionsprüfung (1)
- Multimaterial-3-D-Druck (1)
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3d printer. The aim of the study was to produce a 3d print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation. The basis of 3d printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front Advance™ from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3d printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used and a final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing. With the help of the thermal simulation results and the subsequent evaluation, it was possible to draw a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It was measured that just 3 mm from the balloon surface into the myocardium the temperature dropped to 25 °C. The simulation model was printed using two 3d printing methods. Both methods, as well as the different printing materials offer different advantages and disadvantages. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model. Three-dimensional heart rhythm models as well as virtual simulations allow very clear visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
In recent years simple CAD systems have entered the market, which are offered as freeware or open source projects. These systems prove to be a key technology especially for the further expansion of 3D printing, because a 3D model of the object to be printed is a prerequisite for the use of a 3D printer. Therefore, this contribution reviews several common simple CAD systems. Thus technical and economic criteria are evaluated. It is also demonstrated how the models designed in this manner can be used in 3D printing. A case study shows the possibilities and limitations to be expected when using simple CAD systems.
In this study, we tested the function of a replica of the over 500-year-old original of the
famous Franconian Imperial Knight Götz von Berlichingen’s first “iron hand”, which we
reconstructed by computer-aided design (CAD) and recently printed using a multi-material
3D printer. In different everyday tasks, the artificial hand prosthesis proved to be remarkably
helpful. Thus, the hand could hold a wine glass, some grapes, or a smartphone. With a
suitable pencil, even writing was possible without any problem. Although for all these
functions the healthy other hand was necessary to assist at the beginning, the artificial hand
is an astonishing mechanical aid with many possibilities. Therefore, in certain cases, the
non-invasive approach of a passive mechanical hand replacement, which is an individual,
quick and cheap solution due to modern 3D printing, may always be worth considering
also for today’s requirements.