Since their dawning, space communications have been among the strongest driving applications for the development of error correcting codes. Indeed, space-to-Earth telemetry (TM) links have extensively exploited advanced coding schemes, from convolutional codes to Reed-Solomon codes (also in concatenated form) and, more recently, from turbo codes to low-density parity-check (LDPC) codes. The efficiency of these schemes has been extensively proved in several papers and reports. The situation is a bit different for Earth-to-space telecommand (TC) links. Space TCs must reliably convey control information as well as software patches from Earth control centers to scientific payload instruments and engineering equipment onboard (O/B) spacecraft. The success of a mission may be compromised because of an error corrupting a TC message: a detected error causing no execution or, even worse, an undetected error causing a wrong execution. This imposes strict constraints on the maximum acceptable detected and undetected error rates.
We present a novel scheme for Slotted ALOHA random access systems that combines physical-layer network coding (PLNC) with multiuser detection (MUD). The PLNC and MUD are applied jointly at the physical layer to be able to extract any linear combination of messages experiencing a collision within a slot. The set of combinations extracted from a whole frame is then processed by the receiver to recover the original packets. A simple precoding stage at the transmitting terminals allows the receiver to further decrease the packet loss rate. We present results for the decoding at the physical layer as well as several performance measures at frame level, namely, throughput, packet loss rate, and energy efficiency. The results we present are promising and suggest that a cross-layer approach leveraging on the joint use of PLNC and MUD can significantly improve the performance of random access systems in the presence of slow fading.