Refine
Document Type
- Article (reviewed) (4) (remove)
Keywords
- Thermomechanik (3)
- Bruch (1)
- Crack closure (1)
- Cyclic J (1)
- Ermüdung (1)
- Fatigue crack growth (1)
- Finite-Elemente-Methode (1)
- Gleichung (1)
- Integralrechnung (1)
- J-integral (1)
The following contribution deals with the experimental investigation and theoretical evaluation of fatigue crack growth under isothermal and non-isothermal conditions at the nickel alloy 617. The microstructure and mechanical properties of alloy 617 are influenced significantly by the thermal heat treatment and the following thermal exposure in service. Hence, a solution annealed and a long-time service exposed material condition is studied. The crack growth measurement is carried out by using an alternate current potential drop system, which is integrated into a thermomechanical fatigue (TMF) test facility. The measured fatigue crack growth rates results in a function of material condition, temperature and load waveform. Furthermore, the results of the non-isothermal tests depend on the phase between thermal and mechanical load (in-phase, out-of-phase). A fracture mechanic based, time dependent model is upgraded by an approach to consider environmental effects, where almost all model parameters represent directly measureable values. A consistent description of all results and a good correlation with the experimental data can be achieved.
In this paper, the correlation of the cyclic J-integral, ΔJ, and the cyclic crack-tip opening displacement, ΔCTOD, is studied in the presence of crack closure to assess the question if ΔJ describes the crack-tip opening displacement in this case. To this end, a method is developed to evaluate ΔJ numerically within finite-element calculations. The method is validated for an elastic–plastic material that exhibits Masing behavior. Different strain ranges and strain ratios are considered under fully plastic cyclic conditions including crack closure. It is shown that the cyclic J-integral is the parameter to determine the cyclic crack-tip opening displacement even in cases where crack closure is present.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.