Refine
Year of publication
Document Type
- Article (reviewed) (425) (remove)
Keywords
- Dünnschichtchromatographie (16)
- Adsorption (11)
- Metallorganisches Netzwerk (9)
- Ermüdung (8)
- Lithiumbatterie (8)
- Energieversorgung (6)
- Intelligentes Stromnetz (6)
- Simulation (6)
- Brennstoffzelle (5)
- Haustechnik (5)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (166)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (135)
- INES - Institut für Energiesystemtechnik (65)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (51)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (51)
- Fakultät Medien und Informationswesen (M+I) (14)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (7)
- IfTI - Institute for Trade and Innovation (5)
- IUAS - Institute for Unmanned Aerial Systems (4)
- POIM - Peter Osypka Institute of Medical Engineering (ab 21.10.2020) (4)
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Abstract: Electrode Model and Simulation of His Bundle Pacing for Cardiac Resynchronization Therapy
(2020)
Background: A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His bundle pacing.
Methods: Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. This conventional type of biventricular pacing leads to a reduction of the left ventricular ejection fraction. Furthermore, the non-responder rate of the CRT therapy is about one third of the CRT patients.
Results: His bundle pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the His bundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1.5 V in combination with a pacing pulse duration of 1 ms.
Conclusions: Compared to conventional cardiac pacemaker pacing, His bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
The three lines of defense model (TLoD) aims to provide a simple and effective way to improve coordination and enhance communications on risk management and control by clarifying the essential roles and duties of different governance functions. Without effective coordination of these governance functions, work can be duplicated or key risks may be missed or misjudged. To address these challenges, professional standards recommend that the chief audit executive (CAE) coordinates activities with other internal and external governance stakeholders (assurance providers). We consider survey responses from 415 CAEs from Austria, Germany, and Switzerland to analyze determinants that help to implement the TLoD without any challenges and to explore the extent of (coordination) challenges between the internal audit function and the respective governance stakeholders. Our results show a great variance in the extent of coordination challenges dependent on different determinants and the respective governance stakeholder.
Diffracted waves carry high‐resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. However, the diffraction energy tends to be weak compared to the reflected energy and is also sensitive to inaccuracies in the migration velocity, making the identification of its signal challenging. In this work, we present an innovative workflow to automatically detect scattering points in the migration dip angle domain using deep learning. By taking advantage of the different kinematic properties of reflected and diffracted waves, we separate the two types of signals by migrating the seismic amplitudes to dip angle gathers using prestack depth imaging in the local angle domain. Convolutional neural networks are a class of deep learning algorithms able to learn to extract spatial information about the data in order to identify its characteristics. They have now become the method of choice to solve supervised pattern recognition problems. In this work, we use wave equation modelling to create a large and diversified dataset of synthetic examples to train a network into identifying the probable position of scattering objects in the subsurface. After giving an intuitive introduction to diffraction imaging and deep learning and discussing some of the pitfalls of the methods, we evaluate the trained network on field data and demonstrate the validity and good generalization performance of our algorithm. We successfully identify with a high‐accuracy and high‐resolution diffraction points, including those which have a low signal to noise and reflection ratio. We also show how our method allows us to quickly scan through high dimensional data consisting of several versions of a dataset migrated with a range of velocities to overcome the strong effect of incorrect migration velocity on the diffraction signal.
Extracting horizon surfaces from key reflections in a seismic image is an important step of the interpretation process. Interpreting a reflection surface in a geologically complex area is a difficult and time-consuming task, and it requires an understanding of the 3D subsurface geometry. Common methods to help automate the process are based on tracking waveforms in a local window around manual picks. Those approaches often fail when the wavelet character lacks lateral continuity or when reflections are truncated by faults. We have formulated horizon picking as a multiclass segmentation problem and solved it by supervised training of a 3D convolutional neural network. We design an efficient architecture to analyze the data over multiple scales while keeping memory and computational needs to a practical level. To allow for uncertainties in the exact location of the reflections, we use a probabilistic formulation to express the horizons position. By using a masked loss function, we give interpreters flexibility when picking the training data. Our method allows experts to interactively improve the results of the picking by fine training the network in the more complex areas. We also determine how our algorithm can be used to extend horizons to the prestack domain by following reflections across offsets planes, even in the presence of residual moveout. We validate our approach on two field data sets and show that it yields accurate results on nontrivial reflectivity while being trained from a workable amount of manually picked data. Initial training of the network takes approximately 1 h, and the fine training and prediction on a large seismic volume take a minute at most.
Ecological concerns on the climatic effects of the emissions from electricity production stipulate the remuneration of electricity grids to accept growing amounts of intermittent regenerative electricity feed-in from wind and solar power. Germany’s eager political target to double regenerative electricity production by 2030 puts pressure on grid operators to adapt and restructure their transmission and distribution grids. The ability of local distribution grids to operate autonomous of transmission grid supply is essential to stabilize electricity supply at the level of German federal states. Although congestion management and collaboration at the distribution system operator (DSO) level are promising approaches, relatively few studies address this issue. This study presents a methodology to assess the electric energy balance for the low-voltage grids in the German federal state of Baden-Württemberg, assuming the typical load curves and the interchange potential among local distribution grids by means of linear programming of the supply function and for typical seasonal electricity demands. The model can make a statement about the performance and development requirements for grid architecture for scenarios in 2035 and 2050 when regenerative energies will—according to present legislation—account for more than half of Germany’s electricity supply. The study details the amendment to Baden-Württemberg’s electricity grid required to fit the system to the requirements of regenerative electricity production. The suggested model for grid analysis can be used in further German regions and internationally to systematically remunerate electricity grids for the acceptance of larger amounts of regenerative electricity inflows. This empirical study closes the research gap of assessing the interchange potential among DSO and considers usual power loads and simultaneously usual electricity inflows.
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.