Refine
Year of publication
Document Type
- Conference Proceeding (59)
- Article (reviewed) (34)
- Article (unreviewed) (20)
- Part of a Book (14)
- Study Thesis (12)
- Book (5)
- Other (2)
- Bachelor Thesis (1)
- Contribution to a Periodical (1)
- Patent (1)
Language
- English (149) (remove)
Keywords
- COVID-19 (12)
- Government Measures (11)
- Corona (9)
- Crisis (8)
- Export (8)
- Produktion (7)
- Ausbildung (5)
- Ultraschall (4)
- CAD (3)
- Design (3)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (149) (remove)
First year Business Administration students tend to regard themselves as “non-computer scientists” and often have a lack of motivation about taking IT courses in general, either because they perceive them as too technical, too difficult or somewhat irrelevant. In an attempt to counteract this perception and increase the levels of engagement and willing attendance to class, we decided to flip the traditional lecture model and develop a new teaching and learning approach for the IT Fundamentals course using an open source Enterprise Resource Planning (ERP) system as the platform from which to draw the various underlying IT concepts and through which the relevant competences can be acquired.
This paper describes the implementation process of this new contextualized learning framework “IT via ERP” and the changes in the didactical methods to support it.
A benchmark analysis of Long Range (LoRaTM) Communication at 2.45 Ghz for safety applications
(2014)
The need for the logistics sector to timely respond to the increasing requirements of a globalised and digitalised world relies greatly on the com- petences and skills of its labour force. It becomes therefore essential to reinforce the cooperation between universities and business partners in the logistics and supply chain management fields across the European region and to build a logistics knowledge cluster supported by a communication and collaboration platform to foster continuous learning, skill acquisition and experience sharing anytime anywhere. In this paper we focus on designing the conceptual and technical framework for a communication and collaboration platform with the aim to establish the communication pipelines between the partner institutions, facilitating user interactions and exchange, leading to the creation of new knowledge and innovation in the logistics field. This framework is based on the requirements of the three main stakeholders: students, lecturers and companies, and consists of four functional areas defined according to the platform opera- tional requirements. A working prototype of the platform was developed using the Moodle learning management system and its core tools to determine its applicability and possible enhancement requirements. In the next stages of the project some additional tools like a knowledge base and the integration of the partners’ learning management systems to form the logistics knowledge cluster will be implemented.
A novel Bluetooth Low Energy advertising scan algorithm is presented for hybrid radios that are additionally capable to measure energy on Bluetooth channels, e.g. as they would need to be compliant with IEEE 802.15.4. Scanners applying this algorithm can achieve a low latency whilst consuming only a fraction of the power that existing mechanisms can achieve at a similar latency. Furthermore, the power consumption can scale with the incoming network traffic and in contrast to the existing mechanisms, scanners can operate without any frame loss given ideal network conditions. The algorithm does not require any changes to advertisers, hence, stays compatible with existing devices. Performance evaluated via simulation and experiments on real hardware shows a 37 percent lower power consumption compared to the best existing scan setting while even achieving a slightly lower latency which proves that this algorithm can be used to improve the quality of service of connection-less Bluetooth communication or reduce the connection establishment time of connection-oriented communication.
Many sectors, like finance, medicine, manufacturing, and education, use blockchain applications to profit from the unique bundle of characteristics of this technology. Blockchain technology (BT) promises benefits in trustability, collaboration, organization, identification, credibility, and transparency. In this paper, we conduct an analysis in which we show how open science can benefit from this technology and its properties. For this, we determined the requirements of an open science ecosystem and compared them with the characteristics of BT to prove that the technology suits as an infrastructure. We also review literature and promising blockchain-based projects for open science to describe the current research situation. To this end, we examine the projects in particular for their relevance and contribution to open science and categorize them afterwards according to their primary purpose. Several of them already provide functionalities that can have a positive impact on current research workflows. So, BT offers promising possibilities for its use in science, but why is it then not used on a large-scale in that area? To answer this question, we point out various shortcomings, challenges, unanswered questions, and research potentials that we found in the literature and identified during our analysis. These topics shall serve as starting points for future research to foster the BT for open science and beyond, especially in the long-term.
In medical applications wireless technologies are not widely spread. Today they are mainly used in non latency-critical applications where reliability can be guaranteed through retransmission protocols and error correction mechanisms. By using retransmission protocols within the disturbed shared wireless channel latency will increase. Therefore retransmission protocols are not sufficient for removing latency-critical wired connections within operating rooms such as foot switches. Todays research aims to improve reliability through the physical characteristics of the wireless channel by using diversity methods and more robust modulation. In this paper an Architecture for building up a reliable network is presented. The Architecture offers the possibility for devices with different reliability, latency and energy consumption requirements to participate. Furthermore reliability, latency and energy consumption are scalable for every single participant.
The paper recommends an approach to estimate effectively the probability of buffer overflow in high-speed communication networks, capable of carrying diverse traffic, including self-similar teletraffic, and supporting diverse levels of quality of service. Simulations with stochastic, long-range dependent self-similar traffic source models are conducted. A new efficient algorithm, based on a variant of the RESTART/LRE method, is developed and applied to accelerate the buffer overflow simulation in a finite buffer single server model under long-range dependent self-similar traffic load with different buffer sizes. Numerical examples and simulation results are shown