Refine
Year of publication
Document Type
- Part of a Book (58) (remove)
Language
- English (58) (remove)
Keywords
- Informatik (2)
- Abtragung (1)
- Afrika (1)
- App <Programm> (1)
- Artistic Research (1)
- Assistive systems at the workplace (1)
- Automata (1)
- Banking (1)
- Batterie (1)
- Computer Games (1)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (18)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (16)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (14)
- Fakultät Medien und Informationswesen (M+I) (12)
- ACI - Affective and Cognitive Institute (6)
- INES - Institut für Energiesystemtechnik (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (2)
- IfTI - Institute for Trade and Innovation (2)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (2)
Recent advances in motion recognition allow the development of Context-Aware Assistive Systems (CAAS) for industrial workplaces that go far beyond the state of the art: they can capture a user's movement in real-time and provide adequate feedback. Thus, CAAS can address important questions, like Which part is assembled next? Where do I fasten it? Did an error occur? Did I process the part in time? These new CAAS can also make use of projectors to display the feedback within the corresponding area on the workspace (in-situ). Furthermore, the real-time analysis of work processes allows the implementation of motivating elements (gamification) into the repetitive work routines that are common in manual production. In this chapter, the authors first describe the relevant backgrounds from industry, computer science, and psychology. They then briefly introduce a precedent implementation of CAAS and its inherent problems. The authors then provide a generic model of CAAS and finally present a revised and improved implementation.
DE\GLOBALIZE
(2020)
It is the purpose of this paper to address ethical issues concerning the development and application of Assistive Technology at Workplaces (ATW). We shall give a concrete technical concept how such technology might be constructed and propose eight technical functions it should adopt in order to serve its purpose. Then, we discuss the normative questions why one should use ATW, and by what means. We argue that ATW is good to the extent that it ensures social inclusion and consider four normative domains in which its worth might consists in. In addition, we insist that ATW must satisfy two requirements of good workplaces, which we specify as (a) an exploitation restraint and (b) a duty of care.
Power systems are increasingly built from distributed generation units and smart consumers that are able to react to grid conditions. Managing this large number of decentralized electricity sources and flexible loads represent a very huge optimization problem. Both from the regulatory and the computational perspective, no one central coordinator can optimize this overall system. Decentralized control mechanisms can, however, distribute the optimization task through price signals or market-based mechanisms. This chapter presents the concepts that enable a decentralized control of demand and supply while enhancing overall efficiency of the electricity system. It highlights both technological and business challenges that result from the realization of these concepts, and presents the state-of-the-art in the respective domains.
Dementia is a clinical diagnosis reflecting many possible underlying pathologies, for example, vascular dementia and neurodegenerative disorders such as frontotemporal dementia, Lewy body-type disorder or Alzheimer’s disease (AD). The breakthrough of 99mtechnetium-labelled perfusion tracers in the 1990s resulted in many SPECT studies of flow changes in AD. In the first decade of 2000, the role of perfusion SPECT was shifted from diagnosis towards differential diagnosis, parallel to the growing attention for diagnosing early stages of dementia. Previously a diagnosis based largely on a process of exclusion, new guidelines have emerged increasingly employing positive criteria to establish the diagnosis, including neuroimaging biomarkers. Nowadays, FDG PET has largely limited the role of perfusion SPECT, although it is still considered a valuable and cost-effective alternative when PET is not available.
Preface
(2021)
In the past decades, developments in the fields of medicine, new media, and biotechnologies challenged many representations and practices, questioning the understanding of our corporeal limits. Using concrete examples from literary fiction, media studies, philosophy, performance arts, and social sciences, this collection underlines how bodily models and transformations, thought until recently to be only fictional products, have become a part of our reality. The essays provide a spectrum of perspectives on how the body emerges as a transitional environment between fictional and factual elements, a process understood as faction.
Time-of-Flight Cameras Enabling Collaborative Robots for Improved Safety in Medical Applications
(2020)
Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.