Refine
Document Type
- Conference Proceeding (61)
- Article (reviewed) (7)
- Article (unreviewed) (3)
- Part of a Book (2)
- Master's Thesis (2)
- Doctoral Thesis (1)
- Report (1)
Language
- English (77) (remove)
Keywords
- Eingebettetes System (8)
- Kommunikation (4)
- 6LoWPAN (2)
- Applikation (2)
- Internet der Dinge (2)
- Messtechnik (2)
- Netzwerk (2)
- Sensortechnik (2)
- Bellman Ford algorithm (1)
- Bloom filters (1)
Institute
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (77) (remove)
The authors claim that location information of stationary ICT components can never be unclassified. They describe how swarm-mapping crowd sourcing is used by Apple and Google to worldwide harvest geo-location information on wireless access points and mobile telecommunication systems' base stations to build up gigantic databases with very exclusive access rights. After having highlighted the known technical facts, in the speculative part of this article, the authors argue how this may impact cyber deterrence strategies of states and alliances understanding the cyberspace as another domain of geostrategic relevance. The states and alliances spectrum of activities due to the potential existence of such databases may range from geopolitical negotiations by institutions understanding international affairs as their core business, mitigation approaches at a technical level, over means of cyber deterrence-by-retaliation.
In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.
Covert- and side-channels as well as techniques to establish them in cloud computing are in focus of research for quite some time. However, not many concrete mitigation methods have been developed and even less have been adapted and concretely implemented by cloud providers. Thus, we recently conceptually proposed C 3 -Sched a CPU scheduling based approach to mitigate L2 cache covert-channels. Instead of flushing the cache on every context switch, we schedule trusted virtual machines to create noise which prevents potential covert-channels. Additionally, our approach aims on preserving performance by utilizing existing instead of artificial workload while reducing covert-channel related cache flushes to cases where not enough noise has been achieved. In this work we evaluate cache covert-channel mitigation and performance impact of our integration of C 3 -Sched in the XEN credit scheduler. Moreover, we compare it to naive solutions and more competitive approaches.
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
The evolution of cellular networks from its first generation (1G) to its fourth generation (4G) was driven by the demand of user-centric downlink capacity also technically called Mobile Broad-Band (MBB). With its fifth generation (5G), Machine Type Communication (MTC) has been added into the target use cases and the upcoming generation of cellular networks is expected to support them. However, such support requires improvements in the existing technologies in terms of latency, reliability, energy efficiency, data rate, scalability, and capacity.
Originally, MTC was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc. Nowadays there is an additional demand around applications with low-latency requirements. Among other well-known challenges for recent cellular networks such as data rate energy efficiency, reliability etc., latency is also not suitable for mission-critical applications such as real-time control of machines, autonomous driving, tactile Internet etc. Therefore, in the currently deployed cellular networks, there is a necessity to reduce the latency and increase the reliability offered by the networks to support use cases such as, cooperative autonomous driving or factory automation, that are grouped under the denomination Ultra-Reliable Low-Latency Communication (URLLC).
This thesis is primarily concerned with the latency into the Universal Terrestrial Radio Access Network (UTRAN) of cellular networks. The overall work is divided into five parts. The first part presents the state of the art for cellular networks. The second part contains a detailed overview of URLLC use cases and the requirements that must be fulfilled by the cellular networks to support them. The work in this thesis is done as part of a collaboration project between IRIMAS lab in Université de Haute-Alsace, France and Institute for Reliable Embedded Systems and Communication Electronics (ivESK) in Offenburg University of Applied Sciences, Germany. The selected use cases of URLLC are part of the research interests of both partner institutes. The third part presents a detailed study and evaluation of user- and control-plane latency mechanisms in current generation of cellular networks. The evaluation and analysis of these latencies, performed with the open-source ns-3 simulator, were conducted by exploring a broad range of parameters that include among others, traffic models, channel access parameters, realistic propagation models, and a broad set of cellular network protocol stack parameters. These simulations were performed with low-power, low-cost, and wide-range devices, commonly called IoT devices, and standardized for cellular networks. These devices use either LTE-M or Narrowband-IoT (NB-IoT) technologies that are designed for connected things. They differ mainly by the provided bandwidth and other additional characteristics such as coding scheme, device complexity, and so on.
The fourth part of this thesis shows a study, an implementation, and an evaluation of latency reduction techniques that target the different layers of the currently used Long Term Evolution (LTE) network protocol stack. These techniques based on Transmission Time Interval (TTI) reduction and Semi-Persistent Scheduling (SPS) methods are implemented into the ns-3 simulator and are evaluated through realistic simulations performed for a variety of low-latency use cases focused on industry automation and vehicular networking. For testing the proposed latency reduction techniques in cellular networks, since ns-3 does not support NB-IoT in its current release, an NB-IoT extension for LTE module was developed. This makes it possible to explore deployment limitations and issues.
In the last part of this thesis, a flexible deployment framework called Hybrid Scheduling and Flexible TTI for the proposed latency reduction techniques is presented, implemented and evaluated through realistic simulations. With help of the simulation evaluation, it is shown that the improved LTE network proposed and implemented in the simulator can support low-latency applications with low cost, higher range, and narrow bandwidth devices. The work in this thesis points out the potential improvement techniques, their deployment issues and paves the way towards the support for URLLC applications with upcoming cellular networks.
The status quo of PROFINET, a commonly used industrial Ethernet standard, provides no inherent security in its communication protocols. In this thesis an approach for protecting real-time PROFINET RTC messages against spoofing, tampering and optionally information disclosure is specified and implemented into a real-world prototype setup. Therefor authenticated encryption is used, which relies on symmetric cipher schemes. In addition a procedure to update the used symmetric encryption key in a bumpless manner, e.g. without interrupting the real-time communication, is introduced and realized.
The concept for protecting the PROFINET RTC messages was developed in collaboration with a task group within the security working group of PROFINET International. The author of this thesis has also been part of that task group. This thesis contributes by proofing the practicability of the concept in a real-world prototype setup, which consists of three FPGA-based development boards that communicate with each other to showcase bumpless key updates.
To enable a bumpless key update without disturbing the deterministic real-time traffic by dedicated messages, the key update annunciation and status is embedded into the header. By provisioning two key slots, of which only one is in used, while the other is being prepared, a well-synchronized coordinated switch between the receiver and the sender performs the key update.
The developed prototype setup allows to test the concept and builds the foundation for further research and implementation activities, e.g. the impact of cryptographic operations onto the processing time.
Wireless synchronization of industrial controllers is a challenging task in environments where wired solutions are not practical. The best solutions proposed so far to solve this problem require pretty expensive and highly specialized FPGA-based devices. With this work we counter the trend by introducing a straightforward approach to synchronize a fairly cheap IEEE 802.11 integrated wireless chip (IWC) with external devices. More specifically we demonstrate how we can reprogram the software running in the 802.11 IWC of the Raspberry Pi 3B and transform the receiver input potential of the wireless transceiver into a triggering signal for an external inexpensive FPGA. Experimental results show a mean-square synchronization error of less than 496 ns, while the absolute synchronization error does not exceed 6 μs. The jitter of the output signal that we obtain after synchronizing the clock of the external device did not exceed 5.2 μs throughout the whole measurement campaign. Even though we do not score new records in term of accuracy, we do in terms of complexity, cost, and availability of the required components: all these factors make the proposed technique a very promising of the deployment of large-scale low-cost automation solutions.
In the area of cloud computing, judging the fulfillment of service-level agreements on a technical level is gaining more and more importance. To support this we introduce privacy preserving set relations as inclusiveness and disjointness based ao Bloom filters. We propose to compose them in a slightly different way by applying a keyed hash function. Besides discussing the correctness of set relations, we analyze how this impacts the privacy of the sets content as well as providing privacy on the sets cardinality. Indeed, our solution proposes to bring another layer of privacy on the sizes. We are in particular interested how the overlapping bits of a Bloom filter impact the privacy level of our approach. We concretely apply our solution to a use case of cloud security audit on access control and present our results with real-world parameters.
This work discusses several use cases of post-mortem mobile device tracking in which privacy is required e.g. due to client-confidentiality agreements and sensibility of data from government agencies as well as mobile telecommunication providers. We argue that our proposed Bloomfilter based privacy approach is a valuable technical building block for the arising General Data Protection Regulation (GDPR) requirements in this area. In short, we apply a solution based on the Bloom filters data structure that allows a 3rd party to performsome privacy saving setrelations on a mobiletelco’s access logfile or other mobile access logfile from harvesting parties without revealing any other mobile users in the proximity of a mobile base station but still allowing to track perpetrators.
Embedded Analog Physical Unclonable Function System to Extract Reliable and Unique Security Keys
(2020)
Internet of Things (IoT) enabled devices have become more and more pervasive in our everyday lives. Examples include wearables transmitting and processing personal data and smart labels interacting with customers. Due to the sensitive data involved, these devices need to be protected against attackers. In this context, hardware-based security primitives such as Physical Unclonable Functions (PUFs) provide a powerful solution to secure interconnected devices. The main benefit of PUFs, in combination with traditional cryptographic methods, is that security keys are derived from the random intrinsic variations of the underlying core circuit. In this work, we present a holistic analog-based PUF evaluation platform, enabling direct access to a scalable design that can be customized to fit the application requirements in terms of the number of required keys and bit width. The proposed platform covers the full software and hardware implementations and allows for tracing the PUF response generation from the digital level back to the internal analog voltages that are directly involved in the response generation procedure. Our analysis is based on 30 fabricated PUF cores that we evaluated in terms of PUF security metrics and bit errors for various temperatures and biases. With an average reliability of 99.20% and a uniqueness of 48.84%, the proposed system shows values close to ideal.