Refine
Year of publication
Document Type
- Conference Proceeding (94)
- Article (unreviewed) (18)
- Article (reviewed) (12)
- Part of a Book (8)
- Contribution to a Periodical (1)
- Report (1)
Keywords
- Kommunikation (11)
- Eingebettetes System (8)
- Intelligentes Stromnetz (4)
- Sicherheit (4)
- Energieversorgung (3)
- Messung (3)
- Sensortechnik (3)
- Applikation (2)
- Drahtloses lokales Netz (2)
- Internet (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (101)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (66)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (28)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (3)
- Fakultät Medien und Informationswesen (M+I) (1)
- Zentrale Einrichtungen (1)
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
The excessive control signaling in Long Term Evolution networks required for dynamic scheduling impedes the deployment of ultra-reliable low latency applications. Semi-persistent scheduling was originally designed for constant bit-rate voice applications, however, very low control overhead makes it a potential latency reduction technique in Long Term Evolution. In this paper, we investigate resource scheduling in narrowband fourth generation Long Term Evolution networks through Network Simulator (NS3) simulations. The current release of NS3 does not include a semi-persistent scheduler for Long Term Evolution module. Therefore, we developed the semi-persistent scheduling feature in NS3 to evaluate and compare the performance in terms of uplink latency. We evaluate dynamic scheduling and semi-persistent scheduling in order to analyze the impact of resource scheduling methods on up-link latency.
Vehicle-to-Everything (V2X) communication promises improvements in road safety and efficiency by enabling low-latency and reliable communication services for vehicles. Besides using Mobile Broadband (MBB), there is a need to develop Ultra Reliable Low Latency Communications (URLLC) applications with cellular networks especially when safety-related driving applications are concerned. Future cellular networks are expected to support novel latencysensitive use cases. Many applications of V2X communication, like collaborative autonomous driving requires very low latency and high reliability in order to support real-time communication between vehicles and other network elements. In this paper, we classify V2X use-cases and their requirements in order to identify cellular network technologies able to support them. The bottleneck problem of the medium access in 4G Long Term Evolution(LTE) networks is random access procedure. It is evaluated through simulations to further detail the future limitations and requirements. Limitations and improvement possibilities for next generation of cellular networks are finally detailed. Moreover, the results presented in this paper provide the limits of different parameter sets with regard to the requirements of V2X-based applications. In doing this, a starting point to migrate to Narrowband IoT (NB-IoT) or 5G - solutions is given.
The next generation cellular networks are expected to improve reliability, energy efficiency, data rate, capacity and latency. Originally, Machine Type Communication (MTC) was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc., but there is additional demand around applications with low latency requirements, like industrial automation, driver-less cars, and so on. Improvements are required in 4G Long Term Evolution (LTE) networks towards the development of next generation cellular networks for providing very low latency and high reliability. To this end, we present an in-depth analysis of parameters that contribute to the latency in 4G networks along with a description of latency reduction techniques. We implement and validate these latency reduction techniques in the open-source network simulator (NS3) for narrowband user equipment category Cat-Ml (LTE-M) to analyze the improvements. The results presented are a step towards enabling narrowband Ultra Reliable Low Latency Communication (URLLC) networks.
Integration of BACNET OPC UA-Devices Using a JAVA OPC UA SDK Server with BACNET Open Source Library
(2014)
Enthält die Artikel:
"CPU-based Covert- and Side-Channels in Cloud Ecosystems" von Johann Betz und Dirk Westhoff, S. 19-23
"The overview of Public Key Infrastructure based security approaches for vehicular communications" von Artem Yushev und Axel Sikora, S. 30-35
"Testing Embedded TLS Implementations Using Fuzzing Techniques and Differential Testing" von Andreas Walz und Axel Sikora, S. 36-40