Refine
Year of publication
- 2015 (63) (remove)
Document Type
- Conference Proceeding (30)
- Article (reviewed) (12)
- Article (unreviewed) (11)
- Part of a Book (5)
- Book (3)
- Patent (2)
Is part of the Bibliography
- yes (63) (remove)
Keywords
- Applikation (5)
- Abtragung (3)
- Eingebettetes System (3)
- Herz (3)
- Kommunikation (3)
- Physik (3)
- Raman-Spektroskopie (3)
- Datensicherung (2)
- Funktechnik (2)
- Herzrhythmusstörung (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (63) (remove)
Stromzustandsregelung
(2015)
Smartphones Welcome! Preparatory Course in Mathematics using the Mobile App MassMatics. Case Study
(2015)
Geschichte(n) der Medizin
(2015)
Renommierte Autoren erzählen lebendige und mitreißende Geschichte(n) der Medizin über Krankheiten, Ärzte und Forscher.
-Wie kam es zur Entdeckung des Blutkreislaufes, wo man doch lange Zeit glaubte, die Leber produziere täglich Tausende von Litern Blut?
-Warum sind Hirnschrittmacher erst viel später als Herzschrittmacher auf der medizinischen Bühne erschienen, wo doch das Gehirn schon in der Antike trepaniert und erforscht wurde?
-Die Antworten auf diese und andere Fragen werden nicht nur wissenschaftlich exakt, sondern auch überaus unterhaltsam gegeben.
-Beachtlich, dass Friedrich II. von Preußen auch begnadeter Hobby-Arzt war.
-Bemerkenswert, wie eine Frau zu einer Zeit zielstrebig Ärztin wurde, als nur Männer Medizin studieren durften.
-Bewegend die Erlebnisse eines Arztes an der Front.
-Faszinierend, wie ein „Wunderdoktor“ reihenweise Frauen in Ohnmacht versetzte, um sie zu heilen; er wurde damit zum Mitbegründer der Psychotherapie.
-Das Buch knüpft mit diesen und weiteren Erzählungen an den großen Erfolg des ersten Bandes an und bietet in populärwissenschaftlicher Weise neues Lese- und Bildungsvergnügen.
Die Erfindung betrifft ein Verfahren zum Spektrum-Monitoring eines vorgegebenen Frequenzbandes, bei dem die spektrale Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes für alle in dem Frequenzband enthaltenen Rausch- und Signalanteile bestimmt wird und für das Detektieren des Vorhandenseins eines oder mehrerer Signale innerhalb des vorgegebenen Frequenzbandes das Überschreiten eines Schwellenwertes (λ) durch die spektrale Leistungsdichte (S(f)) ausgewertet wird. Erfindungsgemäß wird der Schwellenwert (λ) abhängig von einer Schätzung einer Verteilungsdichte (hR(S)) für den Rauschanteil der spektralen Leistungsdichte (S(f)) innerhalb des vorgegebenen Frequenzbandes und einem vorgegebenen Wert für die Falschalarmwahrscheinlichkeit (Pfa) berechnet.
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things (IoT). Whereas the lower layers (IEEE802.15.4 and 6LoWPAN) are already well defined and consolidated with regard to frame formats, header compression, routing protocols and commissioning procedures, there is still an abundant choice of possibilities on the application layer. Currently, various groups are working towards standardization of the application layer, i.e. the ETSI Technical Committee on M2M, the IP for Smart Objects (IPSO) Alliance, Lightweight M2M (LWM2M) protocol of the Open Mobile Alliance (OMA), and OneM2M. This multitude of approaches leaves the system developer with the agony of choice. This paper selects, presents and explains one of the promising solutions, discusses its strengths and weaknesses, and demonstrates its implementation.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
The application of leaky feeder (radiating) cables is a common solution for the implementation of reliable radio communication in huge industrial buildings, tunnels and mining environment. This paper explores the possibilities of leaky feeders for 1D and 2D localization in wireless systems based on time of flight chirp spread spectrum technologies. The main focus of this paper is to present and analyse the results of time of flight and received signal strength measurements with leaky feeders in indoor and outdoor conditions. The authors carried out experiments to compare ranging accuracy and radio coverage area for a point-like monopole antenna and for a leaky feeder acting as a distributed antenna. In all experiments RealTrac equipment based on nanoLOC radio standard was used. The estimation of the most probable path of a chirp signal going through a leaky feeder was calculated using the ray tracing approach. The typical non-line-of-sight errors profiles are presented. The results show the possibility to use radiating cables in real time location technologies based on time-of-flight method.
Distribution of esophageal interventricular conduction delays in CRT patients and healthy subjects
(2015)
Digital networked communications are the key to all Internet-of-Things applications, especially to smart metering systems and the smart grid. In order to ensure a safe operation of systems and the privacy of users, the transport layer security (TLS) protocol, a mature and well standardized solution for secure communications, may be used. We implemented the TLS protocol in its latest version in a way suitable for embedded and resource-constrained systems. This paper outlines the challenges and opportunities of deploying TLS in smart metering and smart grid applications and presents performance results of our TLS implementation. Our analysis shows that given an appropriate implementation and configuration, deploying TLS in constrained smart metering systems is possible with acceptable overhead.
The instability of ultra-thin films of an electrolyte bordering a dielectric gas in an external tangential electric field is scrutinized. The solid wall is assumed to be either a conducting or charged dielectric surface. The problem has a steady one-dimensional solution. The theoretical results for a plug-like velocity profile are successfully compared with available experimental data. The linear stability of the steady-state flow is investigated analytically and numerically. Asymptotic long-wave expansion has a triple-zero singularity for a dielectric wall and a quadruple-zero singularity for a conducting wall, and four (for a conducting wall) or three (for a charged dielectric wall) different eigenfunctions. For infinitely small wave numbers, these eigenfunctions have a clear physical meaning: perturbations of the film thickness, of the surface charge, of the bulk conductivity, and of the bulk charge. The numerical analysis provides an important result: the appearance of a strong short-wave instability. At increasing Debye numbers, the short-wave instability region becomes isolated and eventually disappears. For infinitely large Weber numbers, the long-wave instability disappears, while the short-wave instability persists. The linear stability analysis is complemented by a nonlinear direct numerical simulation. The perturbations evolve into coherent structures; for a relatively small external electric field, these are large-amplitude surface solitary pulses, while for a sufficiently strong electric field, these are short-wave inner coherent structures, which do not disturb the surface.
The automatic classification of the modulation format of a detected signal is the intermediate step between signal detection and demodulation. If neither the transmitted data nor other signal parameters such as the frequency offset, phase offset and timing information are known, then automatic modulation classification (AMC) is a challenging task in radio monitoring systems. The approach of clustering algorithms is a new trend in AMC for digital modulations. A novel algorithm called `highest constellation pattern matching' is introduced to identify quadrature amplitude modulation and phase shift keying signals. The obtained simulation and measurement results outperform the existing algorithms for AMC based on clustering. Finally, it is shown that the proposed algorithm works in a real monitoring environment.
La industria del bacanora en Sonora, México, enfrenta la influencia de una compleja red de factores culturales, tecnológicos, económicos y legales que inhiben su desarrollo. Ello ocurre pese al esfuerzo institucional por radicar un marco normativo que elimine la práctica de los métodos informales de elaboración que derivan en calidades heterogéneas de licor. El conseguirlo se complica ante la dificultad que enfrentan los actores de esta industria para implementar prácticas efectivas de verificación de las normas vigentes en los confines de la geografía de la Denominación de Origen. En este documento se describe el uso de un prototipo de espectrómetro Raman por transformada de Fourier para analizar cualitativamente muestras desconocidas de bacanora. Este dispositivo se construyó con el uso de un interferómetro Michelson convencional, un contador de fotones de diseño propio y un foto-detector de referencia. Los resultados del trabajo confirman que dada su naturaleza de diseño y construcción, este instrumento de medición y su efectiva técnica de operación a bajo costo, constituye una alternativa viable, adaptable fácilmente a las necesidades de los actores productivos e institucionales, para asistirlos en la elaboración de bacanora y a la verificación de su calidad conforme a los criterios de la normatividad.
We report the use of the Raman spectral information of the chemical compound toluene C7H8 as a reference on the analysis of laboratory-prepared and commercially acquired gasoline-ethanol blends. The rate behavior of the characteristic Raman lines of toluene and gasoline has enabled the approximated quantification of this additive in commercial gasoline-ethanol mixtures. This rate behavior has been obtained from the Raman spectra of gasoline-ethanol blends with different proportions of toluene.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
The increasing number of transistors being clocked at high frequencies of modern microprocessors lead to an increasing power consumption, which calls for an active dynamic thermal management. In a research project a system environment has been developed, which includes thermal modeling of the microprocessor in the board system, a software environment to control the characteristics of the system’s timing behavior, and a modified Linux scheduler, which is enhanced with a prediction controller. Measurement results are shown for this development for a Freescale i.MX6Q quad-core microprocessor.
Chronic insomnia is defined by difficulties in falling asleep, maintaining sleep, and early morning awakening, and is coupled with daytime consequences such as fatigue, attention deficits, and mood instability. These symptoms persist over a period of at least 3 months (Diagnostic and Statistical Manual 5 criteria). Chronic insomnia can be a symptom of many medical, neurological, and mental disorders. As a disorder, it incurs substantial health-care and occupational costs, and poses substantial risks for the development of cardiovascular and mental disorders, including cognitive deficits. Family and twin studies confirm that chronic insomnia can have a genetic component (heritability coefficients between 42% and 57%), whereas the investigation of autonomous and central nervous system parameters has identified hyperarousal as a final common pathway of the pathophysiology, implicating an imbalance of sleep–wake regulation consisting of either overactivity of the arousal systems, hypoactivity of the sleep-inducing systems, or both. Insomnia treatments include benzodiazepines, benzodiazepine-receptor agonists, and cognitive behavioural therapy. Treatments currently under investigation include transcranial magnetic or electrical brain stimulation, and novel methods to deliver psychological interventions.
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
In this paper an RFID/NFC (ISO 15693 standard) based inductively powered passive SoC (system on chip) for biomedical applications is presented. A brief overview of the system design, layout techniques and verification method is dis-cussed here. The SoC includes an integrated 32 bit microcontroller, sensor interface circuit, analog to digital converter, integrated RAM, ROM and some other peripherals required for the complete passive operation. The entire chip is realized in CMOS 0.18 μm technology with a chip area of 1.52mm x 3.24 mm.
The overview of public key infrastructure based security approaches for vehicular communications
(2015)
Wireless sensor networks have recently found their way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researchers. Such monitoring applications, in general, don way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researc latency requirements regarding to the energy efficiency. Also a challenge of this application is the network topology as the application should be able to be deployed in very large scale. Nevertheless low power consumption of the devices making up the network must be on focus in order to maximize the lifetime of the whole system. These devices are usually battery-powered and spend most of their energy budget on radio transceiver module. A so-called Wake-On-Radio (WoR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, some designs for integration of WOR into IEEE 802.1.5.4 are to be discussed, providing an overview of trade-offs in energy consumption while deploying the WoR schemes in a monitoring system.
Environmental Monitoring is an attractive application field for Wireless Sensor Network (WSN). Water Level Monitoring helps to increase the efficiency of water distribution and management. In Pakistan, the world’s largest irrigation system covers 90.000 km of channels which needs to be monitored and managed on different levels. Especially the sensor systems for the small distribution channels need to be low energy and low cost. The distribution presents a technical solution for a communication system which is developed in a research project being co-funded by German Academic Exchange Service (DAAD). The communication module is based on IEEE-802.15.4 transceivers which are enhanced through Wake-On-Radio (WOR) to combine low-energy and real-time behavior. On higher layers, IPv6 (6LoWPAN) and corresponding routing protocols like Routing Protocol for Low power and Lossy Networks (RPL) can extend range of the network. The data are stored in a database and can be viewed online via a web interface. Of course, also automatic data analysis can be performed.
Extended Performance Measurements of Scalable 6LoWPAN Networks in an Automated Physical Testbed
(2015)
IPv6 over Low power Wireless Personal Area Networks, also known as 6LoWPAN, is becoming more and more a de facto standard for such communications for the Internet of Things, be it in the field of home and building automation, of industrial and process automation, or of smart metering and environmental monitoring. For all of these applications, scalability is a major precondition, as the complexity of the networks continuously increase. To maintain this growing amount of connected nodes a various 6LoWPAN implementations are available. One of the mentioned was developed by the authors' team and was tested on an Automated Physical Testbed for Wireless Systems at the Laboratory Embedded Systems and Communication Electronics of Offenburg University of Applied Sciences, which allows the flexible setup and full control of arbitrary topologies. It also supports time-varying topologies and thus helps to measure performance of the RPL implementation. The results of the measurements prove an excellent stability and a very good short and long-term performance also under dynamic conditions. In all measurements, there is an advantage of minimum 10% with regard to the average times, like global repair time; but the advantage with reagr to average values can reach up to 30%. Moreover, it can be proven that the performance predictions from other papers are consistent with the executed real-life implementations.
Who is Who? Joseph Fourier
(2015)