Refine
Year of publication
Document Type
- Conference Proceeding (38) (remove)
Keywords
- Ausbildung (6)
- Produktion (5)
- Design (4)
- Digitalisierung (2)
- Prototyp (2)
- 3D print (1)
- 3D-Druck von leitfähigen Materialien (1)
- Additive Manufacturing (1)
- Anbieter (1)
- CAAD (1)
- CAD (1)
- Cryoballoon catheter ablation (1)
- Design , Produktgestaltung (1)
- Dienstleistung (1)
- Fertigungstechnik (1)
- Gesellschaft (1)
- Greifsystemen (1)
- Heart rhythm model (1)
- Herstellung (1)
- Imprägnierung (1)
- Konsum (1)
- Leistung (1)
- Maschinenbau (1)
- Materialwirtschaft (1)
- Mensch-Roboter-Kollaboration (1)
- Modeling and simulation (1)
- Multi-Material 3D-Printing (1)
- Polymere (1)
- Preis (1)
- Product Design (1)
- Rapid Prototyping (1)
- Supraventricular tachycardia (1)
- Verfahren (1)
- Vergleich (1)
- Vervielfältigung (1)
- Voxel (1)
- Voxelization (1)
- Zusatzstoff (1)
- gedruckter Sensorik (1)
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
Zur Herstellung von Spritzgussformeinsätzen kommen in der Regel spanende Verfahren zum Einsatz. In den letzten Jahren hat sich allerdings auch die additive Herstellung dieser Werkzeuge als zweckmäßig erwiesen. In der Produktentwicklung spielt die Agilität heute eine immer wichtigere Rolle. Um mögliche Potentiale des Additive Tooling im Rahmen des Agile Prototyping und um Unterschiede zu den konventionellen Herstellverfahren aufzuzeigen, werden Angebote für die Fertigung mehrerer Formeinsätze durch eine CNC- und HSC-Fertigung, sowie durch additive Herstellung angefragt und hinsichtlich Beschaffungskosten und -zeiten miteinander verglichen. Zudem erfolgt eine Bewertung der technischen Unterschiede. Aus diesen beiden Betrachtungen kann schließlich ein Profil über die drei Herstellverfahren abgeleitet werden, welches bei der anwendungsfallspezifischen Verfahrensauswahl unterstützen soll.
Additive manufacturing (AM) or 3D printing (3DP) has become a widespread new technology in recent years and is now used in many areas of industry. At the same time, there is an increasing need for training courses that impart the knowledge required for product development in 3D printing. In this article, a workshop on “Rapid Prototyping” is presented, which is intended to provide students with the technical and creative knowledge for product development in the field of AM. Today, additive manufacturing is an important part of teaching for the training of future engineers. In a detailed literature review, the advantages and disadvantages of previous approaches to training students are examined and analyzed. On this basis, a new approach is developed in which the students analyze and optimize a given product in terms of additivie manufacturing. The students use two different 3D printers to complete this task. In this way, the students acquire the skills to work independently with different processes and materials. With this new approach, the students learn to adapt the design to different manufacturing processes and to observe the restrictions of different materials. The results of these courses are evaluated through feedback in a presentation and a questionnaire.
Direct Digital Manufacturing of Architectural Models using Binder Jetting and Polyjet Modeling
(2019)
Today, architectural models are an important tool for illustrating drawn-on plansor computer-generated virtual models and making them understandable. Inaddition to the conventional methods for the manufacturing of physical models, awide range of processes for Direct Digital Manufacturing (DDM) has spreadrapidly in recent years. In order to facilitate the application of these new methodsfor architects, this contribution examines which technical and economic resultsare possible using 3D printed architectural models. Within a case study, it will beshown on the basis of a multi-storey detached house, which kind of datapreparation is necessary. The DDM of architectural models will be demonstratedusing two widespread techniques and the resulting costs will be compared.
Besides of conventional CAD systems, new, cloud-based CAD systems have also been available for some years. These CAD systems designed according to the principle of software as a service (SaaS) differ in some important features from the conventional CAD systems. Thus, these CAD systems are operated via a browser and it is not necessary to install the software on a computer. The CAD-data is stored in the cloud and not on a local computer or central server. This new approach should also facilitate the sharing and management of data. Finally, many of these new CAD systems are available as freeware for education purposes, so the universities can save license costs. This contribution examines newly developed, cloud-based CAD systems. In the context of a case study, the application of these new CAD systems are investigated in the training of engineers in design education. Thus, the students compare a conventional and a cloud-based CAD system as part of an exercise of designing and 3D modelling of a pinion shaft. Subsequently, the students manufacture a drawing with different views of the pinion shaft. This assessment evaluates different criteria such as user-friendliness, tutorial support and installation effort.
The development of new processes and materials for additive manufacturing is currently progressing rapidly. In order to use the advantages of additive manufacturing, however, product development and design must also be adapted to these new processes. Therefore it is suitable to use structural optimization. To achieve the best results in lightweight design, it is important to have an approach that reduces the volume in the unloaded regions and considers the restrictions and characteristics of the additive manufacturing process. In this contribution, a case study using a humanoid robot is presented. Thus, the pelvis module of a humanoid robot is optimized regarding its weight and stiffness. Furthermore, an integrated design is implemented in order to reduce the number of parts and the screw connections. The manufacturing uses a new aluminum-based material that has been specially developed for use in additive manufacturing and lightweight construction. For the additive manufacturing by means of the Selective Laser Melting (SLM) process, different restrictions and the assembly concepts of the humanoid robot have to be taken into account. These restrictions have to be considered in the setting of the individual parameters and target functions of the structural optimization. As a result, a framework is presented that shows the steps of the redesign and the optimization of the pelvis module. In order to achieve high accuracy with the product, the redesign of the pelvis module is demonstrated with regard to mechanical and thermal postprocessing. Finally, the redesigned part and the different assembly concepts are compared to analyze the economic and technical effects of the optimization.
The additive manufacturing processes have developed significantly in recent years. Currently, new generative processes are coming onto the market. Likewise, the number of available materials that can be processed using additive processes is steadily increasing. Therefore, an important task is to integrate these new processes and materials into the university education of engineers. Due to the rapid change and the constant development in the field of additive manufacturing, a pure transfer of knowledge is not expedient, because this obsolete very quickly. Rather, the students should be enabled to use their skills in such a way that they can always handle new technologies and materials independently and meaningfully.
In this paper, therefore, a new course is developed in which the students largely independently work with additive manufacturing processes. For this purpose, teams of four to five students from different technical programs are formed. The teams have the task of developing and manufacturing a product using additive processes. The goal is to create a powerful product by taking into account the optimization of costs and use of resources.
As an example, the development and additive manufacturing of an ornithopter (aircraft that flies by flapping its wings) will be presented in this contribution. The students have to analyze and optimize the mechanics and aerodynamics of the aircraft. In addition, the rules for production-oriented design must be determined and applied. Further more, they should assess the costs and material consumption during development and production.
This contribution shows how the students have achieved the different learning outcomes. In addition, it becomes clear how the students independently acquired and applied their knowledge in development, design and additive manufacturing. Also, it will be demonstrated how much time the students spent on learning the different technologies.
Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
(2019)
The visualization of heart rhythm disturbance and atrial fibrillation therapy allow the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3D printer. The aim of the study was to produce a 3D print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation.
The basis of 3D printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front AdvanceTM from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3D printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used: 1. a binder jetting printer with polymer gypsum and 2. a multi-material printer with photopolymer. A final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing.
With the help of the thermal simulation results and the subsequent evaluation, it was possible to make a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It could be measured that already 3 mm from the balloon surface into the myocardium the temperature drops to 25 °C. The simulation model was printed using two 3D printing methods. Both methods as well as the different printing materials offer different advantages and disadvantages. While the first model made of polymer gypsum can be produced quickly and cheaply, the second model made of photopolymer takes five times longer and was twice as expensive. On the other hand, the second model offers significantly better properties and was more durable overall. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model.
Three-dimensional heart rhythm models as well as virtual simulations allow a very good visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Implementation of interdisciplinary student teams in design education for additive manufacturing
(2018)
Additive manufacturing (AM) technologies are becoming increasingly popular in all areas of product development. Therefore, it is imperative that students be taught Design for AM. However, due to the rapid development of new methods and materials for AM, it does not make sense to only teach particular design guidelines, as these can quickly become obsolete. Rather, students should acquire the competence to develop guidelines themselves, that take into account the current state of the art. Thus, they will be able to react to changing processes and new materials
in the future. In order to convey the independent development of design guidelines for additive manufacturing by students, a new concept was developed, which is presented in this contribution. In this process, the learning goal is worked out by a group of students on the basis of a practical
task. The group consists of an interdisciplinary team in order to combine different competencies and to provide different perspectives on the task. A case study will show the design and manufacture of a miniature aircraft using Fused Layer Modelling. The aim of the development is above all the design for additive manufacturing. In addition, a low use of resources in combination with lightweight construction should be achieved. In the implementation of the task, the students are confronted with challenging aerodynamic design of wings as well as with the economic evaluation of the development process. An examination of the level of knowledge before and after the case study examines the learning success.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
Einsatz von Additive Manufacturing zur Darstellung von Simulationsergebnissen in der Blechumformung
(2016)
Virtuelle Modell "begreifbar" Machen - Darstellung von Simulationsergebnissen mittels 3D-Farbdruck
(2016)