The 40 Altshuller Inventive Principles with numerous sub-principles remain over decades the most frequently applied tool of the Theory of Inventive Problem Solving TRIZ for systematic idea generation. However, their application often requires a concentrated, creative and abstract way of thinking that can be fairly challenging for the newcomers to TRIZ. This paper describes an approach to reduce the abstraction level of inventive sub-principles and presents the results of the idea generation experiment conducted with three groups of undergraduate and graduate students from different years of study in mechanical and process engineering. The students were asked to generate and to record their individual ideas for three design problems using a pre-defined set of classical and modified sub-principles within 10 minutes. The overall outcomes of the experiment support the assumption that the less abstract wording of the modified sub-principles leads to higher number of ideas. The distribution of ideas between the fields of MATCHEM-IBD (Mechanical, Acoustic, Thermal, Chemical, Electrical, Magnetic, Intermolecular, Biological and Data processing) differs significantly between groups using modified and abstract sub-principles.
Classification of TRIZ Inventive Principles and Sub-Principles for Process Engineering Problems
(2019)
The paper proposes a classification approach of 40 Inventive Principles with an extended set of 160 sub-principles for process engineering, based on a thorough analysis of 155 process intensification technologies, 200 patent documents, 6 industrial case studies applying TRIZ, and other sources. The authors define problem-specific sub-principles groups as a more precise and productive ideation technique, adaptable for a large diversity of problem situations, and finally, examine the anticipated variety of ideation using 160 sub-principles with the help of MATCEM-IBD fields.
Accelerated transformation of the society and industry through digi-talization, artificial intelligence and other emerging technologies has intensified the need for university graduates that are capable of rapidly finding breakthrough solutions to complex problems, and can successfully implement innovation con-cepts. However, there are only few universities making significant efforts to com-prehensively incorporate creative and systematic tools of TRIZ (theory of in-ventive problem solving) and KBI (knowledge-based innovation) into their de-gree structure. Engineering curricula offer little room for enhancing creativity and inventiveness by means of discipline‐specific subjects. Moreover, many ed-ucators mistakenly believe that students are either inherently creative, or will in-evitably obtain adequate problem-solving skills as a result of their university study. This paper discusses challenges of intelligent integration of TRIZ and KBI into university curricula. It advocates the need for development of standard guidelines and best-practice recommendations in order to facilitate sustainable education of ambitious, talented, and inventive specialists. Reflections of educa-tors that teach TRIZ and KBI to students from mechanical, electrical, process engineering, and business administration are presented.
VDI Standard 4521: Status
(2016)
VDI Guideline 4521 Part 1: “Inventive problem solving with TRIZ: Part 1 – Fundamentals and definitions” has been published on 2015-04-01. The standard will sharpen the image of TRIZ, facilitate cooperation, and support studying and teaching. It is not a textbook but concisely summarizes basic assumptions of TRIZ and its terminology. It gives an overview on specific methods and tools which will be described in the following parts.