Refine
Year of publication
Document Type
- Conference Proceeding (334)
- Article (reviewed) (144)
- Article (unreviewed) (100)
- Bachelor Thesis (58)
- Part of a Book (36)
- Contribution to a Periodical (36)
- Book (28)
- Other (15)
- Master's Thesis (13)
- Patent (9)
Conferencetyp
- Konferenzband (54)
- Konferenz-Abstract (2)
- Konferenz-Poster (2)
- Sonstiges (1)
Language
- English (429)
- German (352)
- Multiple languages (2)
- Other language (1)
- Russian (1)
- Spanish (1)
Keywords
- Mikroelektronik (54)
- Kommunikation (15)
- Eingebettetes System (8)
- Energieversorgung (8)
- Intelligentes Stromnetz (8)
- Mathematik (8)
- Applikation (7)
- Brennstoffzelle (7)
- CST (7)
- HF-Ablation (7)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (786) (remove)
Open Access
- Open Access (233)
- Closed Access (169)
- Bronze (90)
- Closed (25)
- Gold (1)
Data is ever increasing in the computing world. Due to advancement of cloud technology the dynamics of volumes of data and its capacity has increased within a short period of time and will keep increasing further. Providing transparency, privacy, and security to the cloud users is becoming more and more challenging along with the volume of data and use of cloud services. We propose a new approach to address the above mentioned challenge by recording the user events in the cloud ecosystem into log files and applying MAR principle namely 1) Monitoring 2) Analyzing and 3) Reporting.
E-Tutoren-Ausbildung: Lernerfahrungen reflektieren – Lehrhandlungskompetenzen dialogisch aufbauen
(2014)
To provide proper solutions to the problem of device dependant content delivery, a fine categorization of the application target devices is needed. Earlier attempts provided two different presentations for desktop and mobile platforms. The mobile platform presentation was divided into three categories, based on a general classification (PDA, Smartphone or mobile phone). In order to improve the on mobile device presentation a finer categorization is introduced. In this paper, our focus is to clarify the concept of this more flexible presentation module, in which the delivered content depends on the efficiency of the device based on a selected set of capabilities.
The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.
Cloud computing is the emerging technology providing IT as a utility through internet. The benefits of cloud computing are but not limited to service based, scalable, elastic, shared pool of resources, metered by use. Due to mentioned benefits the concept of cloud computing fits very well with the concept of m-learning which differs from other forms of e-learning, covers a wide range of possibilities opened up by the convergence of new mobile technologies, wireless communication structure and distance learning development. The concept of cloud computing like any other concept has not only benefits but also introduces myriad of security issues, such as transparency between cloud user and provider, lack of standards, security concerns related to identity, Service Level Agreements (SLA) inadequacy etc. Providing secure, transparent, and reliable services in cloud computing environment is an important issue. This paper introduces a secured three layered architecture with an advance Intrusion Detection System (advIDS), which overcomes different vulnerabilities on cloud deployed applications. This proposed architecture can reduce the impact of different attacks by providing timely alerts, rejecting the unauthorized access over services, and recording the new threat profiles for future verification. The goal of this research is to provide more control over data and applications to the cloud user, which are now mainly controlled by Cloud Service Provider (CSP).
This paper shows the results of the evaluation of two sets of mobile web design guidelines concerning mobile learning. The first set of guidelines is concerned with the usage of text on mobile device screens. The second set is concerned with the usage of images on mobile devices. The evaluation is performed by eye tracking (objective) as well as questionnaires and interviews (subjective) respectively.
The idea of this game is to use a flashcard system to create a short story in a foreign language. The story is developed by a group of people by exchanging sentences via a flashcard system. This way, people can learn from each other without fear of making mistakes because the group members are anonymous.
Flashcards are a well known and proven method to learn and memorise. Such a way of learning is perfectly suited for “learning on the way,” but carrying all the flashcards could be awkward. In this scenario, a mobile device (mobile phone) is an adequate solution. The new mobile device operating system Android from Google allows for writing multimedia-enriched applications.
The advantages of the coupling-of-modes (COM) formalism and the transmission-matrix approach are combined to create exact and computationally efficient analysis and synthesis CAD tools for the design of SAW-resonator filters. The models for the filter components, especially gratings, interdigital transducers (IDTs). and multistrip couplers (MSCs), are based on the COM approach, which delivers closed-form expressions. In order to determine the relevant COM parameters, the integrated COM differential equations are compared with analytically derived expressions from the transmission-matrix approach. The most important second-order effects such as energy storage, propagation loss and mechanical and electrical loading are fully taken into account. As an example, the authors investigate a two-pole, acoustically coupled resonator filter at 914.5 MHz on AT quartz. Excellent agreement between theory and measurement is found.
Der Entwurf von Strukturen zum reflexionsarmen Einbetten von Halbleiterbauteilen in Mikrostreifenleitungsschaltungen gestaltet sich mit steigender Frequenz kritischer. Deshalb wird ein Verfahren vorgestellt, das es ermöglicht, das Streuverhalten solcher Strukturen unter Anwendung der dreidimensionalen Finite-Differenzen-Methode auf die Maxwellschen Gleichungen numerisch zu berechnen. Hierauf aufbauend wurde das Programmpaket F3D entwickelt. Das Streuverhalten einer Verbindung zweier GaAs-Chips durch eine dielektrische Wand wird in Abhängigkeit von Geometrieparametern diskutiert. Außerdem werden Ersatzschaltbilder unterschiedlicher Komplexität für CAD-Anwendungen vorgestellt. Diese ermöglichen zudem eine rechenzeiteffektive Optimierung dieser Struktur, die somit Filteraufgaben übernehmen kann. Dies wird am Beispiel eines Tiefpasses gezeigt.
Structures for interconnecting active microwave semiconductor-devices, e.g. FET's and MIC's, with the electrical surrounding or with each other have to be designed more and more carefully when increasing the desired upper frequency limit. Therefore, several connecting structures for device embedding have been examined. Mainly, their applicability for the frequency range from 10 GHz to 100 GHz was considered. Additionally, different equivalent circuits were developed to approximately describe their behaviour for CAD-applications.
iSign - internet based simulation of guided wave propagation - ist eine Lernumgebung für Online-Laborversuche. Die Client-Serverarchitektur nutzt server-seitig das Tool F3D, das elektromagnetische Felder in 3D-Strukturen berechnet. Ein Apache-Webserver (unter Linux) bedient den Theorie-/Aufgaben-Teil und die Lernsystemadministration. Ein HPUX Simulationsserver steuert und kontrolliert den mehrstufigen Simulationsvorgang. Eine MySQL-Datenbank erlaubt dynmaische Webseiten-Generierung und Simulations-, Projekt- und Userdatenhaltung. Java-Applets, JavaServer Pages und JavaBeans erzeugen die interaktive Client-Oberfläche zur Eingabe, Ergebnisdarstellung und für Online-Virtual Reality. Die einheitlich gestaltete Benutzeroberfläche verbirgt die Systemkomplexität.
Die hochfrequente, feldnumerische Analyse mit der Finite-Differenzen Methode erfordert die Diskretisierung der zu untersuchenden Struktur in einem nichtäquidistanten Gitter. Vorschriften zur Diskretisierung kreiszylindrischer Strukturen wie sie z.B. bei Durchkontaktierungen auftreten, werden untersucht und eine optimierte Lösung vorgestellt.
Virtual-Reality-Darstellung elektromagnetischer Felder in dreidimensionalen Mikrowellenstrukturen
(2000)
Untersuchungen haben gezeigt, daß der Mensch ein Vielfaches an Informationen in Form von visuellen Eindrücken, im Gegensatz zur textuellen Darstellung, verarbeiten kann. Mit Hilfe des numerischen Feld-Simulationsprogramms F3D können Mikrowellenstrukturen auf die Wechselwirkung mit elektromagnetischen Feldern untersucht werden. Das Programm F3D2VRML stellt die Ergebnisse in einer dreidimensionalen Virtual-Reality-Darstellung (VR) dar.
Damit ist es dem Betrachter möglich, mehr Informationen aufzunehmen, da die Informationen mit Formen und Farben im dreidimensionalen Raum visualisiert werden.
MPC-Workshop Juli 2018
(2018)
MPC-Workshop Februar 2016
(2016)
MPC-Workshop Juli 2015
(2015)
MPC-Workshop Februar 2015
(2015)
MPC-Workshop Juli 2014
(2014)
MPC-Workshop Februar 2014
(2014)
MPC-Workshop Juli 2013
(2013)
MPC-Workshop Februar 2013
(2013)
MPC-Workshop Juli 2012
(2012)
MPC-Workshop Februar 2012
(2012)
MPC-Workshop Juli 2011
(2011)
MPC-Workshop Februar 2011
(2011)
Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg, Reutlingen, 9. Juli 2010
(2010)
Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg, Göppingen, 5. Februar 2010
(2010)
Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg, Karlsruhe, 10. Juli 2009
(2009)
Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg, Künzelsau, 6. Februar 2009
(2009)
Tagungsband zum Workshop der Multiprojekt-Chip-Gruppe Baden-Württemberg, Konstanz, 4. Juli 2008
(2008)
MPC-Workshop Juli 2007
(2007)
MPC-Workshop Februar 2007
(2007)
MPC-Workshop Juli 2006
(2006)
MPC-Workshop Februar 2006
(2006)
MPC-Workshop Juli 2005
(2005)
MPC-Workshop Februar 2005
(2005)
MPC-Workshop Juli 2004
(2004)
MPC-Workshop Februar 2004
(2004)
MPC-Workshop Juli 2003
(2003)
MPC-Workshop Januar 2003
(2003)
MPC-Workshop Juni 2002
(2002)
MPC-Workshop Januar 2002
(2002)
MPC-Workshop Juli 2001
(2001)
MPC-Workshop Februar 2001
(2001)
Today's network landscape consists of quite different network technologies, wide range of end-devices with large scale of capabilities and power, and immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of efforts are being done in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including mobile considering individual situation of the end user. This is very difficult because various kinds of devices used by different users or in different times/parallel by the same user which are not predictable and have to be recognized by the system in order to identify device capabilities. Not only the devices but also Content and User Interfaces are big issues because they could include different kinds of data format like text, image, audio, video, 3D Virtual Reality data and other upcoming formats. A very suitable and useful example of the use of such a system is mobile learning because of the large amount of varying devices with significantly different features and functionalities. This is true not only to support different learners, e.g. all learners within one learning community, but also to support the same learner using different equipment parallel and/or at different times. Those applications may be significantly enhanced by including virtual reality content presentation. Whatever the purposes are, it is impossible to develop and adapt content for all kind of devices including mobiles individually due to different capabilities of the devices, cost issues and author‘s requirement. A solution should be found to enable the automation of the content adaptation process.
The concept of m-learning which differs from other forms of e-learning covers a wide range of possibilities opened up by the convergence of new mobile technologies, wireless communication structure and distance learning development. This process of converging has launched some new goals to support m-learning where heterogeneity of devices, their operating systems (Linux, Windows, Symbian, Android etc) and supported markup languages (WML, XHTML etc), adaptive content, preferences or characteristics of user have become some of the major problems to be solved. To facilitate the learning process even more and to establish literally anytime anywhere learning, learning material/content should be available to the user always even if the user is in offline. Multiple devices used by the same user should also be synchronized among themselves and with server to provide updated learning content and to give a freedom to the user to choose any device as per his/her convenience. In this paper software architecture has been proposed to solve these problems and has been implemented by using a multidimensional flashcard learning system which synchronizes among all the devices that are being used by the user.
Network landscape of recent time contains many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices, will increase their diversity and variety. In this paper software architecture has been proposed to establish device and content format independent communication including 3D imaging and virtual reality data as content. As experimental validation the concept is implemented in collaborative Language Learning Game (LLG), which is a learning tool for language acquisition.
In the field of smart metering it can be observed that standardized protocol, like Wireless M-Bus or ZigBee, enjoy a rapidly increasing popularity. For the protocol implementations, however, up to now, mostly legacy engineering processes and technologies are used, and modern approaches such as model driven design processes or open software platform are disregarded. Therefore, within the WiMBex project, it shall be demonstrated that it is possible to develop a commercial class Wireless M-Bus implementation following state-of-the art design process and using TinyOS as an open source platform. This contribution describes the overall approach of the project, as well as the state and the first experiences of the current work in progress.
During the last ten years the development of wireless sensing applications has become more and more attractive. A major reason for this trend is the large quantity of available wireless technologies. The progressing demand on wireless technologies is mainly driven through development from the industrial wireless sensors market. Especially requirements like low energy consumption, a resource saving simple protocol stack and short timing delays between different states of the wireless transceivers are very important for wireless sensors. Bluetooth Low Energy (BLE) is a rather new wireless standard in addition to the traditional Bluetooth standard (Basis rate and enhanced data rate, BR/EDR) [1]. The BLE will completely fulfill these fundamental requirements. First BLE transceiver chips and modules are available and have been tested and implemented in products. In this paper the performance analysis results of a BLE sensor system which is based on the TI transceiver CC2540F [5] will be presented. The results can be taken for further important investigations like lifetime calculations or BLE simulation models.
Today's network landscape consists of many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. In this paper software architecture has been proposed to establish device and content format independent communication, implemented in Language Learning Game (LLG).
Since cabling is very complex and often causes reliability problems in aircrafts new approaches which base on wireless technologies are highly desired. In this paper an innovative communication system is proposed that uses the essential elements of the airframe for data transfer. The communication is based on the wireless standard for Digital Video Broadcasting (DVB) and enables high data rates, which are required for the in-flight entertainment system as an example of use.
This paper analyzes the applicability of existing communication technology on the Smart Grid. In particular it evaluates how networks, e.g. Peer-to-Peer (P2P) and decentralized Virtual Private Network (VPN) can help set up an agent-based system. It is expected that applications on Smart Grid devices will become more powerful and be able to operate without a central control instance. We analyze which requirements agents and Smart Grid devices place on communication systems and validate promising approaches. The main focus is to create a logical overlay network that provides direct communication between network nodes. We provide a comparison of different approaches of P2P networks and mesh-VPNs. Finally the advantages of mesh-VPN for agent-based systems are worked out.
In large aircrafts the cabling is very complex and often causes reliability problems. This is specially true for modern In-flight Entertainment (IFE) systems, where every passenger can select a preferred movie, play computer games or be able to communicate with other travellers. Due to EMC problems, wireless communication systems (WiFi etc.) didn't succeed in solving these problems. In this paper an innovative communication system is proposed which perfectly supplements an aircraft IFE system. The key innovation of this system is to use structures that are essential parts of the airframe for data transfer, such as seat rails. Those rails consist of rectangular shapes and could easily be modified to fulfill the function of waveguides for microwaves. A waveguide as part of the seat rail would provide enormous benefits for aircrafts, such as a large bandwidth and consequently high data rates, no problems with EMC, unlimited flexibility of seat configuration, mechanical robustness with associated increase of reliability and a few additional advantages related to aircrafts such as reduction of weight and costs.
Mobile learning (m-learning) can be considered as a new paradigm of e-learning. The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer. By outsourcing the computational power to a server, the coverage is worldwide.
The advantages of the coupled-mode (COM) formalism and the transmission-matrix approach are combined in order to create exact and computationally efficient analysis and synthesis tools for the design of coupled surface acoustic wave resonator filters. The models for the filter components, in particular gratings, interdigital transducers (IDTs) and multistrip couplers (MSCs), are based on the COM approach that delivers closed-form expressions. To determine the pertinent COM parameters, the COM differential equations are solved and the solution is compared with analytically derived expressions from the transmission-matrix approach and the Green's function method. The most important second-order effects, such as energy storage, propagation loss, and mechanical and electrical loading, are fully taken into account. As an example, a two-pole, acoustically coupled resonator filter at 914.5 MHz on AT quartz is investigated. Excellent agreement between theory and measurement is found.
It is demonstrated that microwave structures incorporating dielectric resonators (DR) are accurately characterised by means of a 3-dimensional finite-difference CAD package. All major assumptions made so far have been dropped, offering the possibility of a rigorous analysis of the embedding of dielectric resonators into microwave structures. In particular, a finite thickness for the microstrip conductor has been taken into account. The coupling of the DR to a microstrip placed in a metallic housing has been theoretically and experimentally investigated. Theoretical and experimental results are in good agreement and give new insight into DR coupling to microstrip circuits.
The mobile devices related industries are subject to rapid change, driven by technological advances and dynamic consumer behaviour. Hence, the understanding of the mobile devices markets is an important step in the analysis phase of mobile applications development. In this paper, a brief description of the different markets is introduced followed by an analysis of the main features of the markets leaders' devices which are important in the development process of mobile web applications. Finally, approaches are proposed to deal with the mobile devices diversity.
The embedding of microwave devices is treated by applying the finite-difference method to three-dimensional shielded structures. A program package was developed to evaluate electromagnetic fields inside arbitrary transmission-line connecting structures and to compute the scattering matrix. The air bridge, the transition through a wall, and the bond wire are examined as interconnecting structures. Detailed results are given and discussed regarding the fundamental behavior of embedding.
This paper explores the potential of an m-learning environment by introducing the concept of mLab, a remote laboratory environment accessible through the use of handheld devices.
We are aiming to enhance the existing e-learning platform and internet-assisted laboratory settings, where students are offered in-depth tutoring, by providing compact tuition and tools for controlling simulations that are made available to learners via handheld devices. In this way, students are empowered by having access totheir simulations from any place and at any time.
Transthoracic impedance cardiography (ICG) is a non-invasive method for determination of hemodynamic parameters. The basic principle of transthoracic ICG is the measurement of electrical conductivity of the thorax over the time. The aim of the study was the analysis of hemodynamic parameters from healthy individuals and the evaluation of various hemodynamic monitoring devices. Fourteen men (mean age 25 ± 4.59 years) and twelve women (mean age 24 ± 3.5 years) were measured during the cardiovascular engineering laboratory at Offenburg University of Applied Sciences, Offenburg, Germany. The ICG recordings were measured with the devices CardioScreen 1000, CardioScreen 2000 and TensoScreen with the corresponding Software Cardiovascular Lab 2.5 (Medis Medizinische Messtechnik GmbH, Illmenau, Germany). In order to create identical frame conditions, all measurements were recorded in the same position and for the same duration. Various positions were simulated from horizontal lying position to vertical standing position. Altogether, more than 30 hemodynamic parameters were measured.
In contrast to conventional aortic valve replacement, the Transcatheter Aortic Valve Implantation (TAVI) is a new highly specialist alternative to surgical valve replacement for patients with symptomatic severe aortic stenosis and high operative risk. The procedure was performed in a minimally invasive way and was introduced at the university heart centre, Freiburg – Bad Krozingen in 2008. The results have been getting better and better over the years. The aim of the investigation is the analysis of electrocardiogram conduction time and the electrocardiography changes recorded hours and days after the procedure depending on artificial heart valve models, which may lead to pacemaker implantation, even the analysis of the effectiveness of treatment.
In previous work we [1] and other authors (e.g. [2]) have shown that agent-based systems are successful in optimizing delivery plans of single logistics companies and are meanwhile successfully productive in industry. In this paper we show that agent-based systems are particularly useful to also optimize transport across logistics companies. In intercompany optimization, privacy is of major importance between the otherwise competing companies. Some data has to be treated strictly private like the cost model or the constraint model. Other data like order information has to be shared. However, typically the amount of orders released to other companies has also to be limited. We show that our agent-based approach can be easily fine tuned to trade off privacy against the benefit of cooperation.
Mit Hilfe eines Präzisionsmessplatzes soll es ermöglicht werden, automatisierte Tests mit optischen Distanzsensoren der Firma SICK durchzuführen. Hierbei handelt es sich um applikationsbezogene Vergleichsmessungen. Für die Realisierung einer erweiterbaren, automatischen Ansteuerung wird mit LabVIEW eine Software entwickelt, die unterschiedliche Distanzsensoren für Displacement Anwendungen (kurze Reichweite) einbindet. Zur Bewertung von Sensoren werden unterschiedliche Messmodi bereitgestellt. Hierbei werden motorisierte Linearachsen angesteuert, wodurch dynamische 2D-, bzw. 3D Messungen von unterschiedlichen Materialproben ermöglicht werden. Außerdem können Messergebnisse verschiedener Materialproben visuell verglichen werden. Des Weiteren besteht die Möglichkeit, aufgenommene Messdaten zu exportieren.
Mit der realisierten Ansteuerungssoftware ist es möglich, in Zukunft Mitarbeiter der global agierenden Sales & Service Units ressourcenschonend und in einem anwendungsbezogenen Kontext in die Benutzung und Bewertung von Dis-placementsensoren einzuarbeiten. Für diese Maßnahme der betrieblichen Weiterbildung ist eine Lerneinheit konzipiert. Hier geht es hauptsächlich darum, dass Mitarbeiter die Eigenschaften und Konfigurationsmöglichkeiten von Displacementsensoren verstehen und für unterschiedliche Testobjekte anwenden. Für die Lerneinheit sind Unterrichtsmaterialien erstellt sowie ein vollständiger Unterrichtsentwurf erarbeitet. Der Unterrichtsentwurf orientiert sich an dem Perspektivenschema nach Klafki (vgl. 1994, S. 270ff.).
Entwicklung und Implementierung einer Methode zur Funktions- und Verschleißprüfung von Sägeanlagen
(2019)
Die Firma KASTO Maschinenbau produziert Lagersysteme und Sägemaschinen und möchte in Zukunft mit Hilfe von prädiktiver Wartung einen Mehrwert für den Kunden, die firmeneigenen Servicetechniker und die Inbetriebnehmer generieren. Für diesen Weg in Richtung prädiktive Wartung werden in der vorliegenden Arbeit, zunächst mittels Recherche, Grundlagen definiert. Die anschließende Analyse verschiedener Bauteile und Baugruppen in der Lagertechnik und im Sägemaschinenbau führt zur Konkretisierung der Umsetzungsmöglichkeiten.
Im weiteren Verlauf der Arbeit werden die verschleißkritischen Bauteile eines KASTOwin-Bandsägeautomats behandelt. Durch die Analyse der einzelnen Verschleißformen und -erscheinungen an dessen Komponenten können Parameter zur Verschleiß-überwachung ermittelt werden. Die Überwachung dieser Prozesse soll dabei mit bestehender Sensorik durchgeführt werden und beschränkt sich deshalb hauptsächlich auf die Messeinrichtung der Frequenzumformer. Für die Komponenten Sägebandantrieb, Sägevorschubantrieb, Materialvorschubantrieb, Bandverlaufsensor, sowie das Hydrauliksystem werden entsprechende Methoden zur Funktions- und Verschleiß-prüfung ausgearbeitet.
Auf Basis dieser Methoden wird dann die Implementierung in Form eines SPS-Programms und einer dazu passenden, grafischen Benutzeroberfläche durchgeführt. Das bestehende SPS-Programm und die Benutzeroberfläche werden durch zusätzliche Programmteile ergänzt. Sämtliche Ergänzungen sind portabel und modular ausgelegt, sodass diese problemlos auch in anderen Sägemaschinen ergänzt werden können. Um kritische Verschleißsituationen nach deren Eintritt zu analysieren und daraus Schlüsse im Sinne der prädiktiven Wartung zu ziehen, ist die Sicherung aller Langzeitdaten von enormer Bedeutung. Da der remanente Speicher der SPS jedoch begrenzt ist, werden sämtliche Daten über die Visualisierung gesichert. Alle aufgenommen Daten werden sowohl grafisch als auch in Form von Werten visualisiert und können dem Kunden und Servicetechniker, sowie dem Inbetriebnehmer Aufschluss über den Zustand der Komponenten geben.
Letztlich werden die implementierten Abläufe an einer Vorführmaschine getestet. Es kann dabei die Funktion sämtlicher Prüfungen bestätigt werden
This thesis deals with the implementation of the SUBSCALE algorithm in the Python programming language. First, the current state of research and the needs of the target group are considered. Then, the choice of language is decided based on the findings. On the basis of self-generated requirements, the implementation is carried out.
Finally, the code is evaluated for accuracy, consistency, and execution time, as well as its applicability in practice.
Since the implementation of the current work proved to be unconvincing, an approach is tested in which Python is used only as a front-end.