Refine
Year of publication
- 2014 (17) (remove)
Document Type
- Article (reviewed) (9)
- Conference Proceeding (5)
- Article (unreviewed) (2)
- Book (1)
Language
- English (17) (remove)
Keywords
- Hochtemperatur (2)
- Lithiumbatterie (2)
- Maschinenelement (2)
- Produktentwicklung (2)
- Stahl (2)
- Analyse (1)
- Arzneimittel (1)
- Aufbereitung (1)
- Cogeneration (1)
- Diffusion (1)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (17) (remove)
We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their life cycle. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In Part I of the paper, a fracture mechanics model for TMF life prediction was developed based on results of uniaxial tests. In this paper (Part II), the model is formulated for three-dimensional stress states, so that it can be applied in a post-processing step of a finite-element analysis. To obtain reliable stresses and (time dependent plastic) strains in the finite-element calculation, a time and temperature dependent plasticity model is applied which takes non-linear kinematic hardening into account. The material properties of the model are identified from the results of the uniaxial test. The plasticity model and the TMF life model are applied to assess the lifetime of an exhaust manifold.
Using patent information for identification of new product features with high market potential
(2014)
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In this paper (Part I), the low-cycle fatigue (LCF) and TMF properties of HiSiMo are investigated in uniaxial tests and the damage mechanisms are addressed. On the basis of the experimental results a fatigue life model is developed which is based on elastic, plastic and creep fracture mechanics results of short cracks, so that time and temperature dependent effects on damage are taken into account. The model can be used to estimate the fatigue life of components by means of finite-element calculations (Part II of the paper).
A former remote area power supply was converted to a smart cogeneration subnet with combined heat and power to develop and validate a forecast based energy management at the University of Applied Sciences in Offenburg/Germany. Locally processed weather forecasts and forecasted demand profiles are integrated to allow a precise reaction to changes of fluctuating power sources, changes in scheduled demand profiles and to improve the energy efficiency of the supply. The management of the electrical and thermal storages is influenced by the forecasted energy contributions and the forecasted demand. Further approaches should improve the accuracy of forecasting algorithms and integrate parameter models gained of a detailed monitoring to realize predictive controllers.
We present a two dimensional (2D) planar chromatographic separation of estrogenic active compounds on RP-18 (Merck, 1.05559) and silica gel (Merck, 1.05721) phase. A mixture of 13 substances was separated using a solvent mix consisting of methanol–acetonitrile–water (2 + 2 + 1, v/v/v) on RP-18 phase in the first direction and cyclohexane–butylacetate–methanol (8 + 6 + 1, v/v/v) in the second direction on silica gel plate. Both developments were carried out over a distance of 70 mm. We used the grafted method to combine both plates in a 2D-separation. This 2D-separation method can be used to quantify 17α-ethinylestradiol (EE2) in an effect-directed analysis using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducting the reporter gene lacZ that encodes the enzyme ß-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl ß-D-galactopyranoside).