Refine
Year of publication
Document Type
- Conference Proceeding (53) (remove)
Is part of the Bibliography
- yes (53) (remove)
Keywords
- Heart rhythm model (5)
- Modeling and simulation (5)
- Herzkrankheit (4)
- Atrial fibrillation (2)
- CRT (2)
- CST (2)
- Cryoballoon catheter ablation (2)
- Elektrokardiogramm (2)
- HF-Ablation (2)
- Herzrhythmusmodell (2)
Cardiac resynchronization therapy (CRT) with hemodynamic
optimized biventricular pacing is an established
therapy for heart failure patients with sinus rhythm,
reduced left ventricular ejection fraction and wide QRS
complex. The aim of the study was to evaluate electrical
right and left cardiac atrioventricular delay and left atrial
delay in CRT responder and non-responder with sinus
rhythm. Methods: Heart failure patients with New York
Heart Association class 3.0 ± 0.3, sinus rhythm and
27.7 ± 6.1% left ventricular ejection fraction were measured
by surface ECG and transesophageal bipolar left
atrial and left ventricular ECG before implantation of
CRT devices. Electrical right cardiac atrioventricular
delay was measured between onset of P wave and onset
of QRS complex in the surface ECG, left cardiac
atrioventricular delay between onset of left atrial signal
and onset of left ventricular signal in the transesophageal
ECG and left atrial delay between onset and offset of left
atrial signal in the transesophageal ECG. Results: Electrical
atrioventricular and left atrial delay were
196.9 ± 38.7 ms right and 194.5 ± 44.9 ms left cardiac
atrioventricular delay, and 47.7 ± 13.9 ms left atrial
delay. There were positive correlation between right and
left cardiac atrioventricular delay (r = 0.803 P < 0.001)
and negative correlation between left atrial delay and left
ventricular ejection fraction (r = −0.694 P = 0.026) with
67% CRT responder. Conclusions: Transesophageal
electrical left cardiac atrioventricular delay and left atrial
delay may be useful preoperative atrial desynchronization
parameters to improve CRT optimization.
Background: The application of high-frequency ablation is used for the treatment of tachycardia arrhythmias and is a respected method. Ablation with high frequency current leads to the targeted heat destruction of myocardial tissue at specific sites and thus prevents the pathological propagation of excitation through these structures.
Purpose: The aim of this study was to simulate heat propagation during RF ablation with modeled electrodes in different sizes and materials. The simulation was performed on atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) and atrial flutter (AFL).
Methods: Using the modeling and simulation software CST, ablation catheters with 4 mm and 8 mm tip electrodes were modeled from gold and platinum for each. The designed catheters correspond to the manufacturer"s specifications of Medtronic, Biotronik and Osypka. The catheters were integrated into the Offenburg heart rhythm model to simulate and compare the heat propagation during an ablation application, which also takes into account the blood flow in the four heart chambers. A power of 5 W - 40 W was simulated for the 4 mm electrodes and a power of 50 W - 80 W for the 8 mm electrodes.
Results: During the simulated HF ablation application, the temperature at the ablation electrode was measured at different powers. This is 40.67°C at 5 W, 44.34°C at 10 W, 51.76°C at 20 W, 59.0°C at 30 W, and 66.33°C at 40 W. The measured temperature during 40 W application is 39.5°C at 0,5 mm depth in the myocardium and 37.5°C at 2 mm depth.
In the simulation, the 8 mm platinum electrode reached an ablation temperature of 72.85°C at its tip during an applied power of 60 W. In contrast, the 8 mm platinum electrode reached a depth of 5 mm at 39.5 C° and at a depth of 2 mm at 37.5 °C. In contrast, the 8 mm gold electrode reached a temperature of 64.66°C with the same performance. This is due to the thermal properties of gold, which has a better thermal conductivity than platinum.
Conclusions: CST offers the possibility to carry out a static and dynamic simulation of a heart model and the ablation electrodes integrated in it during an HF ablation. In variation with different electrode sizes and materials, therapy methods for the treatment of AVNRT, AVRT and AFL can be optimized
In cardiac resynchronization therapy (CRT) for heart failure, individualization of the AV delay is essential to improve hemodynamics and to minimize non-responder rate. In patients in sinus rhythm having additional disposition to bradycardia, optimization is necessary for both situations, atrial sensing and pacing. Therefore, echo-optimization is the goldstandard but time consuming. Unfortunately, it depends on the particular CRT systems parameter set if the resulting individually optimal AV delays can be programmed or not. Some CRT systems provide a set of AV delays for DDD operation combined with a set of the pace-sense-compensation to optimize the AV delay in DDD and VDD operation. The pace-sense-compensation (PSC) can be defined by the difference of implant-related interatrial conduction intervals in DDD and VDD operation measured in the esophageal left atrial electrogram. In a cohort of 96 CRT patients we found mean PSC of 59-35ms ranging between 0-143ms. As a consequence, allowing 10ms tolerance, AVD optimization is completely impossible in one of the two modes, VDD or DDD operation, in 34 (35%) or 5 (5%) patients with implants restricting the PSC range to 60ms or 100ms, respectively. Thus, we propose companies to provide CRT systems with programmable pace-sense- compensation between 0ms and 150ms.
Background: Transesophageal left atrial (LA) pacing and transesophageal LA ECG recording are semi-invasive techniques for diagnostic and therapy of supraventricular rhythm disturbance. Cardiac resynchronization therapy (CRT) with right atrial (RA) sensed biventricular pacing is an established therapy for heart failure patients with reduced left ventricular (LV) ejection fraction, sinus rhythm and interventricular electrical desynchronization.
Purpose: The aim of the study was to evaluate electromagnetic and voltage pacing fields of the combination of RA pacing, LA pacing and biventricular pacing in patients with long interatrial and interventricular electrical desynchronization.
Methods: The modelling and electromagnetic simulations of transesophageal LA pacing in combination with RA pacing and biventricular pacing would be staged and analyzed with the CST (Computer Simulation Technology) software. Different electrodes were modelled in order to simulate different types of bipolar pacing in the 3D-CAD Offenburg heart rhythm model: The bipolar Solid S (Biotronik) electrode where modelled for RA pacing and right ventricular (RV) pacing, Attain 4194 (Medtronic) for LV pacing and TO8 (Osypka) multipolar esophageal electrode with hemispheric electrodes for LA pacing.
Results: The pacemaker amplitudes for the electromagnetic pacing simulations were performed with 3 V for RA pacing, 1.5 V for RV pacing, 50 V for LA pacing and 3V for LV pacing with pacing impulse duration of 0.5 ms for RA, RV and LV pacing and 10 ms for LA pacing. The atrioventricular pacing delay after RA pacing was 140 ms. The different pacing modes AAI, VVI, DDD, DDD0V and DDD0D were evaluated for the analysis of the electric pacing field propagation of pacemaker, CRT and LA pacing. The pacing results were compared at minimum (LOW) and maximum (HIGH) parameter settings. While the LOW setting produced fewer tetrahedral and more inaccurate results, the HIGH setting produced many tetrahedral and therefore more accurate results.
Conclusions: The simulation of the combination of transesophageal LA pacing with RA sensed biventricular pacing is possible with the Offenburg heart rhythm model. The new temporary 4-chamber pacing method may be additional useful method in CRT non-responders with long interatrial electrical delay.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronisation and reduced left ventricular (LV) function. The aim of this study was to evaluate preejection period (PEP) and left ventricular ejection time (LVET) with transthoracic signal averaging impedance and electrocardiography in HF patients with and without BV pacing.
Methods: 10 HF patients (age 68.9 ± 8 years; 2 females, 9 males) with New York Heart Association (NYHA) class 2,9 ± 0.5, 30.9 ± 10.5 % LV ejection fraction and 159.4 ± 22.9 ms QRS duration were analysed with transthoracic impedance and electrocardiography (Cardioscreen Medis, Ilmenau, Germany) and novel National Intruments LabView 2009 signal averaging software. One day after BV pacing device implantation, AV and VV delays were optimized by transthoracic impedance cardiography and stroke volume (SV) and cardiac output (CO) were gained by Cardioscreen.
Results: Transthoracic impedance and electrocardiography AV and VV delay opimization was possible in all HF patients with BV pacing devices (n= 10). PEP was 154 ± 24ms without BV pacing and measured between onset of QRS in the surface electrocardiogram and onset of ventricular deflection in the impedance cardiogram. LVET was 342 ± 65ms without BV pacing and measured between onset and offset of ventricular deflection in the impedance cardiogram. The use of optimal AV and VV delay BV pacing resulted in improvement of SV from 64.1 ± 26.5 ml to 94.1 ± 33.96 ml (P < 0.05) and CO from 4.05 ± 1.36 l/min to 6.44 ± 1.56 l/min (P < 0.05).
Conclusion: PEP and LVET may be useful parameters of ventricular Desynchronisation. AV and VV delay optimized BV pacing improve SV and CO. Impedance and electrocardiography with LabView 2009 signal averaging may be a simple and useful technique to optimize CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients with sinus rhythm and ventricular desynchronisation. The aim of this study was to evaluate interventricular conduction delay (IVCD) and interatrial conduction delay (IACD) before and after premature ventricular contractions (PVC) in HF patients.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association functional class 2,8 ± 0.5, left ventricular (LV) ejection fraction 28,6 ± 12,6 %, 154 ± 25 ms QRS duration and PVC were analysed with bipolar transesophageal LV and left atrial electrogram recording and National Instruments LabView 2009 software. The level of significance of the t-test is 0,005.
Results: QRS duration increases during PVC (188 ± 32 ms) in comparison to the beat before (154 ± 25 ms, P = ) and after PVC (152 ± 25 ms,). IVCD increases during PVC up to 65 ± 33 ms (51 ± 19 ms in the beat before PVC, P=0.18, 49 ± 19 ms after PVC, P = 0.12). Intra-LV delay of 90 ± 16 ms is not different in the beat before PVC, 90 ± 14 ms during PVC (P = 0.99) and 94 ± 16 ms in the beat after PVC (P = 0.38). IACD is not significantly PVC influenced (67 ± 12 ms before PVC and 65 ± 13 ms after PVC, P = 0.71). Intra-left atrial conduction delay is not significant longer during PVC (57 ± 28 ms) than in the beat before PVC (54 ± 13 ms, P = 0.51) or after PVC (54 ± 8 ms, P = 0.45). PQ duration increases significantly after PVC (224 ± 95 ms) in comparison to the beat before PVC (176± 29 ms, P =...).
Conclusion: Transesophageal left cardiac electrocardiography with LabView 2009 software can improve evaluation of IVCD and IACD before, during and after PVC in HF patient selection for CRT.
Cardiac resynchronization therapy is an established therapy for heart failure patients with sinus rhythm, reduced left ventricular ejection fraction and prolongation of QRS duration. The aim of the study was to evaluate ventricular desynchronization with electrical interventricular delay (IVD) to left ventricular delay (LVD) ratio in atrial fibrillation heart failure patients. IVD and LVD were measured by transesophageal posterior left ventricular ECG recording. In atrial fibrillation heart failure patients with prolonged QRS duration, the mean IVD-to-LVD-ratio was 0.84 +/- 0.42 with a range from 0.17 to 2.2 IVD-to-LVD-ratio. IVD-to-LVD-ratio correlated with QRS duration. IVD-to-LVD-ratio may be a useful parameter to evaluate electrical ventricular desynchronization in atrial fibrillation heart failure patients.
Cardiac resynchronization therapy with atrioventricular and interventricular pacing delay optimized biventricular pacing is an established therapy for heart failure patients with sinus rhythm and reduced left ventricular ejection fraction. The aim of the study was to evaluate atrioventricular and interventricular pacing delay optimization in cardiac resynchroniza-tion therapy by transthoracic impedance cardiography in biventricular pacing with different left ventricular electrode po-sition. In biventricular pacing heart failure patients with lateral, posterolateral and anterolateral left ventricular electrode position, the mean optimal atrioventricular sening delay was 108.6 ± 20.3 ms and the mean optimal interventricular pac-ing delay -12.3 ± 25.9 ms. Transthoracic impedance cardiography may be a useful technique to optimize atrioventricular and interventricular pacing delay in biventricular pacing with different left ventricular electrode position.
Background: The electrical field (E-field) of the biventricular (BV) stimulation is important for the success of cardiac resynchronization therapy (CRT) in patients with cardiac insufficiency and widened QRS complex. The 3D modeling allows the simulation of CRT and high frequency (HF) ablation.
Purpose: The aim of the study was to model different pacing and ablation electrodes and to integrate them into a heart model for the static and dynamic simulation of atrial and BV stimulation and high frequency (HF) ablation in atrial fibrillation (AF).
Methods: The modeling and simulation was carried out using the electromagnetic simulation software CST (CST Darmstadt). Five multipolar left ventricular (LV) electrodes, one epicardial LV electrode, four bipolar right atrial (RA) electrodes, two right ventricular (RV) electrodes and one HF ablation catheter were modeled. Selected electrodes were integrated into the Offenburg heart rhythm model for the electrical field simulation. The simulation of an AV node ablation at CRT was performed with RA, RV and LV electrodes and integrated ablation catheter with an 8 mm gold tip.
Results: The right atrial stimulation was performed with an amplitude of 1.5 V with a pulse width of 0.5. The far-field potentials generated by the atrial stimulation were perceived by the right and left ventricular electrode. The far-field potential at a distance of 1 mm from the right ventricular electrode tip was 36.1 mV. The far-field potential at a distance of 1 mm from the left ventricular electrode tip was measured with 37.1 mV. The RV and LV stimulation were performed simultaneously at amplitude of 3 V at the LV electrode and 1 V at the RV electrode with a pulse width of 0.5 ms each. The far-field potentials generated by the BV stimulations could be perceived by the RA electrode. The far-field potential at the RA electrode tip was 32.86 mV. AV node ablation was simulated with an applied power of 5 W at 420 kHz and 10 W at 500 kHz at the distal 8 mm ablation electrode.
Conclusions: Virtual heart and electrode models as well as the simulations of electrical fields and temperature profiles allow the static and dynamic simulation of atrial synchronous BV stimulation and HF ablation at AF. The 3D simulation of the electrical field and temperature profile may be used to optimize the CRT and AF ablation.
Das Ausmaß der elektrischen ventrikulären Desynchronisation bei reduzierter linksventrikulärer Funktion ist von Bedeutung für den Erfolg der Resynchronisationstherapie der Herzinsuffizienz mit biventrikulärer Stimulation. Das Ziel der Untersuchung besteht in der nichtinvasiven Messung der elektrischen inter-ventrikulären Desynchronisation mit und ohne ischämische Herzerkrankung bei kardialen Resynchronisationstherapie Respondern. Bei Patienten mit 25,3 ± 7,3 % reduzierter linksventrikulärer Ejektionsfraktion und 166,9 ± 38,5 ms QRS-Dauer wurde das transösophageale linksventrikuläre EKG abgeleitet. Die QRS-Dauer korrelierte mit dem interventrikulären und links-ventrikulären Delay bei Resynchronisationstherapie Respondern mit nicht-ischämischer Herzerkrankung.
Termination of atrial flutter (AFL) is not possible in all AFL patients (P) with transesophageal left atrial pacing (TLAP) with undirected electrical pacing field (EPF) and high atrial pacing threshold. Purpose of the study was to evaluate bipo-lar transesophageal left atrial electrocardiography (TLAE) and TLAP with directed EPF for evaluation and termination of AFL with and without simultaneous transesophageal echocardiography (TEE).
Methods: AFL P were analysed using either a TO electrode with one cylindrical (CE) and three or seven hemispherical electrodes (HE) or TEE electrode with four HE (Osypka, Rheinfelden, Germany). Burst TLAP cycle length was between 200msand 50ms.
Results: AFL cycle length was 233±30 ms with mean ventricular cycle length of 540±149 ms. AFL could be terminated by rapid bipolar TLAP with directed EPF using HE-HE and CE-HE with induction of atrial fibrillation (AF), induction of AF and spontaneous conversion to sinus rhythm and direct conversion to sinus rhythm. Directed EPF was simulated with finite element method.
Conclusions: AFL can be evaluated by bipolar TLAE. AFL can be terminated with rapid TLAP with directed EPF with and without simultaneous TEE. Bipolar TLAE with rapid TLAP is a safe, simple and useful method for evaluation and termination of AFL.
Cardiac resynchronisation therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients with interventricular conduction delay (IVCD). The aim of the study was to evaluate transesophageal IVCD and left ventricular (LV) pacing with directed electrical pacing field (EPF) in HF patients.
Methods: HF patients were analysed with bipolar transesophageal LV electrocardiogram recording and LV pacing with constant voltage stimulus output, 4 ms stimulus duration, distal cylindrical electrode (CE) and seven 6 mm hemispherical electrodes (HE) with 15 mm electrode distance (TO, Dr. Osypka, Rheinfelden, Germany).
Results: LV electrocardiogram recording with HE-HE and CE-HE evaluated a mean IVCD of 79.9 ± 36.7 ms. Directed EPF with CE-HE and HE-HE allowed LV VAT (n=12) and LV D00 pacing (n=5) with a mean effective capture output of 97.35 ± 6.64 V. In 15 responders with IVCD of 87 ± 33 ms arterial pulse pressure (PP) increased from 65 ± 24 mmHg to 79 ± 27 mmHg (p < 0.001). EPF was simulated with finite element method.
Conclusions: Transesophageal LV electrocardiography and directed EPF pacing with CE and HE allowed the evaluation of IVCD and PP to select patients for BV pacing.
Transösophageales interventrikuläres Delay bei Vorhofflimmern und kardialer Resynchronisation
(2013)
Die transösophageale linksventrikuläre Elektrokardiographie ermöglicht die Evaluierung der elektrischen ventrikulären Desynchronisation im Rahmen der kardialen Resynchronisationstherapie der Herzinsuffizienz. Das Ziel der Untersuchung besteht in der präoperativen Abschätzung des transösophagealen interventrikulären Delays bei Vorhofflimmern und kardialer Resynchronisationstherapie. Bei Patienten mit Vorhofflimmern, Herzinsuffizienz New York Heart Association Klasse 3,0 ± 0,2 und QRS-Dauer 159,6 ± 23,9 ms wurde das fokusierte transösophageale linksventrikuläre EKG abgeleitet. Die kardiale Resynchronisationstherapie Responder QRS-Dauer korrelierte mit dem transösophagealen interventrikulären Delay bei Vorhofflimmern.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy in approximately two-thirds of symptomatic heart failure (HF) patients (P) with left bundle branch block (LBBB). The aim of this study was to evaluate left atrial (LA) conduction delay (LACD) and left ventricular (LV) conduction delay (LVCD) using pre-implantational transesophageal electrocardiography (ECG) in sinus rhythm (SR) CRT responder (R) and non-responder (NR).
Methods: SR HF P (n=52, age 63.6±10.4 years; 6 females, 46 males) with New York Heart Association (NYHA) class 3.0±0.2, 24.4±7.1 % LV ejection fraction and 171.2±37.6 ms QRS duration (QRSD) were measured by bipolar filtered transesophageal LA and LV ECG recording with hemispherical electrodes (HE) TO catheter (Osypka AG, Rheinfelden, Germany). LACD was measured between onset of P-wave in the surface ECG and onset of LA deflection in the LA ECG. LVCD was measured between onset of QRS in the surface ECG and onset of LV deflection in the LV ECG.
Results: There were 78.8 % SR CRT R (n=41) with 171.2±36.9 ms QRSD, 73.3±25.7 ms LACD, 80.0±24.0 ms LVCD and 2.3±0.5 QRSD-LVCD-ratio. SR CRT R QRSD correlated with LACD (r=0.688, P<0.001) and LVCD (r=0.699, P<0.001). There were 21.2 % SR CRT NR (n=11) with 153.4±22.4 ms QRSD (P=0.133), 69.8±24.8 ms LACD (n=6, P=0.767), 54.2±31.0 ms LVCD (P<0.0046) and 3.9±2.5 QRSD-LVCD-ratio (P<0.001). SR CRT NR QRSD not corre-lated with IACD (r=-0.218, P=0.678) and IVCD (r=0.042, P=0.903). During a 22.8±21.3 month CRT follow-up, the CRT R NYHA class improved from 3.1±0.3 to 1.9±0.3 (P<0.001). In CRT NR, NYHA class not improved (2.9±0.4 to 2.9±0.2, P=1) during 11.2±9.8 months BV pacing.
Conclusions: Transesophageal LA and LV ECG with HE can be utilized to analyse LACD and LVCD in HF P. Pre-implantational LVCD and QRSD-LVCD-ratio may be additional useful parameters to improve P selection for SR CRT.
Capture threshold (CT) for transesophageal left atrial (LA) pacing (TLAP) and transesophageal left ventricular (LV) pacing (TLVP) with conventional cylindrical electrodes (CE) are higher than TLAP feeling threshold (FT). Purpose of the study was to evaluate focused TLAP CT and FT for supraventricular tachycardia (SVT) initiation and focused TLVP CT for cardiac resynchronisation therapy (CRT) simulation.
Methods: SVT initiation in patients (P) with palpitations (n=49, age 47 ± 17 years) was analysed during spontaneous rhythm and during focused bipolar TLAP with atrial constant current stimulus output, distal CE and three or seven 6 mm hemispherical electrodes (HE) (TO, Osypka AG, Rheinfelden, Germany). CRT simulation in heart failure P (n=75, age 62 ± 11 years) was evaluated by focused bipolar TLAP and/or TLVP with ventricular constant voltage stimulus output and different pacing mode.
Results: Focused electrical pacing field between CE and HE (n=28) allowed low threshold TLAP with 8.0 ± 2.6 mA CT at 9.9 ms stimulus duration (SD) which was lower than 9.2 ± 4.5 mA FT at 9.9 ms SD. Focused electrical pacing field between HE and HE (n=21) allowed low threshold TLAP with 8.1 ± 2.2 mA CT at 9.9 ms SD which was lower than 9.8 ± 5.0 mA FT at 9.9 ms SD. SVT initiation by programmed AAI TLAP was possible in 23 P and not possible in 26 P. CRT simulation was evaluated with TLAP and TLVP with VAT, D00 and V00 pacing mode and 95.5 ± 10.9 V TLVP CT at 4.0 ms SD.
Conclusions: Programmed focused AAI TLAP allowed initiation of SVT with very low CT and high FT and focused electrical pacing field between CE-HE and HE-HE.CRT simulation with focused TLAP and/or TLVP with VAT, D00 and V00 pacing mode may be a useful technique to detect responders to CRT.