Refine
Document Type
- Article (reviewed) (15) (remove)
Is part of the Bibliography
- yes (15) (remove)
Keywords
- Cardiac Resynchronization Therapy (2)
- Synchronisierung (2)
- cardiac resynchronization therapy (2)
- esophageal catheter (2)
- heart rhythm model (2)
- pulmonary vein isolation (2)
- 3D modeling (1)
- 3D-Modelling (1)
- 3d Heart Simulation (1)
- 3d print (1)
Abstract: Electrode Model and Simulation of His Bundle Pacing for Cardiac Resynchronization Therapy
(2020)
Background: A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His bundle pacing.
Methods: Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. This conventional type of biventricular pacing leads to a reduction of the left ventricular ejection fraction. Furthermore, the non-responder rate of the CRT therapy is about one third of the CRT patients.
Results: His bundle pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the His bundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1.5 V in combination with a pacing pulse duration of 1 ms.
Conclusions: Compared to conventional cardiac pacemaker pacing, His bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
A disturbed synchronization of the ventricular contraction can cause a highly developed systolic heart failure in affected patients with reduction of the left ventricular ejection fraction, which can often be explained by a diseased left bundle branch block (LBBB). If medication remains unresponsive, the concerned patients will be treated with a cardiac resynchronization therapy (CRT) system. The aim of this study was to integrate His-bundle pacing into the Offenburg heart rhythm model in order to visualize the electrical pacing field generated by His-Bundle-Pacing. Modelling and electrical field simulation activities were performed with the software CST (Computer Simulation Technology) from Dessault Systèms. CRT with biventricular pacing is to be achieved by an apical right ventricular electrode and an additional left ventricular electrode, which is floated into the coronary vein sinus. The non-responder rate of the CRT therapy is about one third of the CRT patients. His- Bundle-Pacing represents a physiological alternative to conventional cardiac pacing and cardiac resynchronization. An electrode implanted in the His-bundle emits a stronger electrical pacing field than the electrical pacing field of conventional cardiac pacemakers. The pacing of the Hisbundle was performed by the Medtronic Select Secure 3830 electrode with pacing voltage amplitudes of 3 V, 2 V and 1,5 V in combination with a pacing pulse duration of 1 ms. Compared to conventional pacemaker pacing, His-bundle pacing is capable of bridging LBBB conduction disorders in the left ventricle. The His-bundle pacing electrical field is able to spread via the physiological pathway in the right and left ventricles for CRT with a narrow QRS-complex in the surface ECG.
The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3d printer. The aim of the study was to produce a 3d print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation. The basis of 3d printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front Advance™ from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3d printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used and a final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing. With the help of the thermal simulation results and the subsequent evaluation, it was possible to draw a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It was measured that just 3 mm from the balloon surface into the myocardium the temperature dropped to 25 °C. The simulation model was printed using two 3d printing methods. Both methods, as well as the different printing materials offer different advantages and disadvantages. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model. Three-dimensional heart rhythm models as well as virtual simulations allow very clear visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Spinal cord stimulation (SCS) is the most commonly used technique of neurostimulation. It involves the stimulation of the spinal cord and is therefore used to treat chronic pain. The existing esophageal catheters are used for temperature monitoring during an electrophysiology study with ablation and transesophageal echocardiography. The aim of the study was to model the spine and new esophageal electrodes for the transesophageal electrical pacing of the spinal cord, and to integrate them in the Offenburg heart rhythm model for the static and dynamic simulation of transesophageal neurostimulation. The modeling and simulation were both performed with the electromagnetic and thermal simulation software CST (Computer Simulation Technology, Darmstadt). Two new esophageal catheters were modelled as well as a thoracic spine based on the dimensions of a human skeleton. The simulation of directed transesophageal neurostimulation is performed using the esophageal balloon catheter with an electric pacing potential of 5 V and a trapezoidal signal. A potential of 4.33 V can be measured directly at the electrode, 3.71 V in the myocardium at a depth of 2 mm, 2.68 V in the thoracic vertebra at a depth of 10 mm, 2.1 V in the thoracic vertebra at a depth of 50 mm and 2.09 V in the spinal cord at a depth of 70 mm. The relation between the voltage delivered to the electrodes and the voltage applied to the spinal cord is linear. Virtual heart rhythm and catheter models as well as the simulation of electrical pacing fields and electrical sensing fields allow the static and dynamic simulation of directed transesophageal electrical pacing of the spinal cord. The 3D simulation of the electrical sensing and pacing fields may be used to optimize transesophageal neurostimulation.
Cardiac contractility modulation (CCM) is a device-based therapy for the treatment of systolic left ventricular chronic heart failure. Unlike other device-based therapies for heart failure, CCM delivers non-excitatory pacing signals to the myocardium. This leads to an extension of the action potential and to an improved contractility of the heart. The modeling and simulation was done with the electromagnetic simulation software CST. Three CCM electrodes were inserted into the Offenburg heart rhythm model and subsequently simulated the electric field propagation in CCM therapy.
In addition, simulations of CCM have been performed with electrodes from other device-based therapies, such as cardiac resynchronization therapy (CRT) and implantable cardioverter / defibrillator (ICD) therapy. At the same distance to the simulation electrode, the electric field is slightly stronger in CCM therapy than in CCM therapy with additionally implanted CRT or ICD electrodes. In addition, there is a change in the electric field propagation at the electrodes of the CRT and the shock electrode of the ICD.
By simulating several different therapy procedures on the heart, it is possible to check how they affect their behavior during normal operation. CCM heart rhythm model simulation allows the evaluation the individual electrical pacing and sensing field during CCM.
Abstract: Electric field of biventricular (BV) pacing, left ventricular (LV) electrode position and electrical interventricular desynchronization are important parameters for successful cardiac resynchronization therapy (CRT) in patients with heart failure, sinus rhythm and reduced LV ejection fraction. The aim of the study was to evaluate electric pacing field of transesophageal left atrial (LA) pacing and BV pacing with 3D heart rhythm simulation. Bipolar right atrial (RA), right ventricular (RV), LV electrodes and multipolar hemispherical esophageal LA electrodes were modeled with CST (Computer Simulation Technology, Darmstadt). Electric pacing field were simulated with bipolar RA and RV pacing with Solid S (Biotronik) electrode, bipolar LV pacing with Attain 4194 (Medtronic) electrode and bipolar LA pacing with TO8 (Osypka) esophageal electrode. 3D heart rhythm model with esophagus allowed electric pacing field simulation of 4-chamber pacing with bipolar intracardiac RA, RV, LV pacing and bipolar transesophageal LA pacing. The pacing amplitudes were 3V RA pacing amplitude, 50V LA pacing amplitude, 1.5V RV pacing amplitude and 3V LV pacing amplitude with 0.5ms pacing pulse duration. The atrioventricular delay between RA pacing and BV pacing was 140ms atrioventricular pacing delay and simultaneous RV and LV pacing. Electric pacing fields were simulated during the different pacing modes AAI, VVI, DDD and DDD0V. The intracardiac far-field pacing potentials were evaluated with intracardiac electrodes and a distance of 1mm from the electrodes with RA electrode 1.104V, RV electrode 0.703V and LV electrode 1.32V. The transesophageal far-field pacing potential was evaluated with transesophageal electrode and a distance of 10mm from the elelctrode with LA electrode 6.076V. Heart rhythm model simulation with esophagus allows evaluation of electric pacing fields in AAI, VVI, DDD, DDD0V and DDD0D pacing modes. Electric pacing field of RA, RV and LV pacing in combination with LA pacing may additional useful pacing mode in CRT non-responders.
Pulmonary vein isolation (PVI) is a common therapy in atrial fibrillation (AF). The cryoballoon was invented to isolate the pulmonary vein in one step and in a shorter time than a point-by-point radiofrequency (RF) ablation. The aim of the study was to model two cryoballoon catheters, one RF catheter and to integrate them into a heart rhythm model for the static and dynamic simulation of PVI by cryoablation and RF ablation in AF. The modeling and simulation were carried out using the electromagnetic and thermal simulation software CST (CST, Darmstadt). Two cryoballons and one RF ablation catheter were modeled based on the technical manuals of the manufacturers Medtronic and Osypka. The PVI especially the isolation of the left inferior pulmonary vein using a cryoballoon catheter was performed with a -50 °C heatsource and an exponential signal. The temperature at the balloon surface was -50 °C after 20 s ablation time, -24 °C from the balloon 0,5 mm in the myocardium, at a distance of 1 mm -3 °C, at 2 mm 18 °C and at a distance of 3mm 29 °C. PVI with RF energy was simulated with an applied power of 5 W at 420 kHz at the distal 8 mm ablation electrode. The temperature at the tip electrode was 110 °C after 15 s ablation time, 75 °C from the balloon at 0,5 mm in the myocardium, at a distance of 1 mm 58 °C, at 2 mm 45 °C and at a distance of 3 mm 38 °C. Virtual heart rhythm and catheter models as well as the simulation of the temperature allow the simulation of PVI in AF by cryo ablation and RF ablation. The 3D simulation of the temperature profile may be used to optimize RF and cryo ablation.
The high frequency (HF) catheter ablation is the gold standard for the therapy of many cardiac tachyarrhythmias, such as atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) or atrial flutter (AFL). The aim of the study was to simulate the HF ablation of AVNRT, AVRT, AFL and its heat propagation in reference to the supplied power with different electrode material and electrode size. The modeling and simulation were performed with the thermal and electromagnetic simulation software CST® (Computer Simulation Technology, Darmstadt). The modeling and simulation were carried out using ablation catheters with 4 mm tip electrode and 8 mm tip electrode with different electrode materials. Both electrode types were made of platinum and gold respectively. For the measurement of the heat propagation in the heart tissue, the catheters were integrated in the Offenburg heart rhythm model. The HF ablation procedures were performed with the 4 mm platinum tip electrode, with an application duration of 45 seconds and a power output of 40 watts. The HF ablation of the atrioventricular node slow pathway produced a maximum temperature of 66.33 °C. The Kent bundle HF ablation in the left atrium achieved a maximum temperature of 67.14 °C. The HF ablation of the right atrial isthmus resulted 65.96 °C. The 8 mm distal platinum tip electrode and a power output of 60 watts reached 72.85 °C. The 8 mm distal gold tip electrode and a power output of 60 watt reached 64.66 °C, due to the improved thermal conductivity of gold. Virtual heart and ablation electrode models allow the static and dynamic simulation of HF ablation with different electrode material and electrode size. The 3D simulation of the temperature profile may be used to optimize the AVNRT, AVRT and AFL HF ablation.
Background: Cardiac resynchronization therapy (CRT) is an established therapy for heart failure (HF) patients (P) with reduced left ventricular (LV) ejection fraction and electrical interventricular desynchronization, but not all P improved clinically. The aim of the study was to evaluate electrical interventricular delay (IVD) to LV delay (LVD) ratio in atrial fibrillation (AF) CRT responder (R) and non-responder (NR).
Methods: AF P (n = 18, age 60.6 ± 11.4 years, 1 female, 17 males) with HF New York Heart Association (NYHA) class 3.0 ± 0.2, 25.3 ± 5.9 % LV ejection fraction and 157.8 ± 24.4 ms QRS duration (QRSD) were measured by surface ECG and focused transesophageal bipolar LV ECG before implantation of CRT pacemaker (n = 2) or CRT defibrillator (n = 16). IVD was measured between onset of QRS in the surface ECG and onset of LV signal in the LV ECG. LVD was measured between onset and offset of LV signal in the LV ECG.
Results: Electrical ventricular desynchronization in AF CRT P were 61.9 ± 26.9ms IVD, 80.6 ± 24.3ms LVD, 0.85 ± 0.41 IVD-LVD-ratio (Figure), 3.12 ± 1.89 QRSD-IVD-ratio and 2.07 ± 0.47 QRSD-LVD-ratio. There were 72.2 % AF CRT R (n = 13) with 64.2 ± 24.6ms IVD and 77.8 ± 21.6ms LVD with Pearson correlation to 0.89 ± 0.39 IVD-LVD-ratio (r = 0.87, P < 0.01; r = -0.69, P < 0.01), 2.82 ± 1.32 QRSD-IVD-ratio (r = -0.76, P < 0.01; r = 0.67, P = 0.011) and 2.13 ± 0.46 QRSD-LVD-ratio (r = 0.57, P = 0.041; r = -0.85, P < 0.01). There were 27.8% AF CRT NR (n = 5) with 56.0 ± 34.5ms IVD and 87.8 ± 31.9ms LVD without correlation to 0.74 ± 0.48 IVD-LVD-ratio, 3.88 ± 2.98 QRSD-IVD-ratio and 1.90 ± 0.48 QRSD-LVD-ratio. During 15.3 ± 13.1 month CRT follow-up, the AF CRT R NYHA class improved from 3.0 ± 0.2 to 2.2 ± 0.3 (P < 0.001). During 18.8 ± 20.7 month CRT follow-up, the AF CRT NR NYHA class not improved from 3 to 3.3 ± 0.97.
Hintergrund: Das elektrische interventrikuläre Delay (IVD) ist bei Patienten (P) mit Herzinsuffizienz (HF), reduzierter linksventrikulärer (LV) Funktion und verbreitertem QRS Komplex von Bedeutung für den Erfolg der kardialen Resynchronisationstherapie (CRT). Die transösophageale LV Elektrokardiographie (EKG) ermöglicht die Bestimmung des elektrischen IVD und linksventrikulären Delays (LVD). Das Ziel der Studie besteht in der Untersuchung des transösophagealen elektrischen IVD, LVD und deren Verhältnis zur QRS Dauer bei rechtsventrikulärer (RV) Stimulation vor Aufrüstung auf eine biventrikuläre (BV) Stimulation.
Methoden: Bei 11 HF P (Alter 69,0 ± 7,9 Jahre; 10 Männer und 1 Frau) mit DDD Schrittmacher (n=10), DDD Defibrillator (n=1) und RV Stimulation, New York Heart Association (NYHA) Klasse 3,0 ± 0,2, LV Ejektionsfraktion 24,5 ± 4,9 % und QRS-Dauer 228,2 ± 44,8 ms wurden das elektrische IVD als Intervall zwischen Beginn des QRS-Komplexes im Oberflächen EKG und Beginn des LV Signals im transösophagealen LV EKG und das elektrische LVD als Intervall zwischen Beginn und Ende des LV Signals im transösophagealen LV EKG präoperativ vor Aufrüstung auf CRT Defibrillator (n=8) und CRT Schrittmacher (n=3) bestimmt. Der Anstieg des arteriellen Pulse Pressure (PP) wurde zwischen RV Stimulation und transösophagealer LV Stimulation mit unterschiedlichem AV-Delay (n=5) vor Aufrüstung von RV auf BV Stimulation getestet.
Ergebnisse: Bei RV Stimulation betrugen IVD 86,54 ± 32,80 ms, LVD 94,45 ± 23,80 ms, QRS-IVD-Verhältnis 2,63 ± 0,81 mit negativer Korrelation zwischen IVD und QRS-IVD-Verhältnis (r=-0,668 P=0,0248) (Fig.) und QRS-LVD-Verhältnis 2,33 ± 0,73. Vorhofsynchrone ventrikuläre Stimulation führte zu 63,6 ± 27,7 mmHg PP bei RV Stimulation und 80,6 ± 38,5 mmHg PP bei LV Stimulation und der PP erhöhte sich bei LV Stimulation mit optimalem AV Delay um 17 ± 11,2 mmHg gegenüber RV Stimulation (P<0,001). Nach Aufrüstung von RV Stimulation auf BV Stimulation verbesserten sich die NYHA Klasse von 3,1 ± 0,2 auf 2,2 ± 0,3 während 30,4 ± 29,6 Monaten CRT.
Schlussfolgerungen: Das transösophageale LV EKG ermöglicht die Bestimmung des elektrischen IVD und LVD bei RV Stimulation zur Evaluierung der interventrikulären und linksventrikulären elektrischen Desynchronisation. IVD, LVD und deren Verhältnis zur QRS Dauer können möglicherweise zur Vorhersage einer CRT Response vor Aufrüstung von RV auf BV Stimulation genutzt werden.