Refine
Year of publication
Document Type
- Article (reviewed) (33) (remove)
Is part of the Bibliography
- yes (33) (remove)
Keywords
- Dünnschichtchromatographie (15)
- Chromatographie (4)
- Faseroptik (3)
- Belastung (2)
- Densitometrie (2)
- HPTLC (2)
- High-performance thin-layer chromatography (2)
- Quantität (2)
- Abtastung (1)
- Aflatoxin (1)
A Simple and Reliable HPTLC Method for the Quantification of the Intense Sweetener Sucralose®
(2003)
This paper describes a simple and fast thin layer chromatography (TLC) method for the monitoring of the relatively new intense sweetener Sucralose® in various food matrices. The method requires little or no sample preparation to isolate or concentrate the analyte. The Sucralose® extract is separated on amino‐TLC‐plates, and the analyte is derivatized “reagent‐free” by heating the developed plate for 20 min at 190°C. Spots can be measured either in the absorption or fluorescence mode. The method allows the determination of Sucralose® at the levels of interest regarding foreseen European legislation (>50 mg/kg) with excellent repeatability (RSD = 3.4%) and recovery data (95%).
Quantification of astaxanthin in salmons by chemiluminescence and absorption after TLC separation
(2018)
Astaxanthin is a keto-carotenoid, belongs to the chemical class of terpenes and is a yellow lipid soluble compound. The compound is present in marine animals like salmons and crustacean. Its colour is due to conjugated double bonds and these double bonds are responsible for its antioxidant effect. Its antioxidant activity is ten times stronger than other carotenoids and nearly 500 fold stronger than vitamin-E. We present a new thin layer chromatography (TLC) method to measure astaxanthin on TLC-plates (Merck, 1.05554) in the visible absorption range as well as by using chemiluminescence. For separation a solvent mixture of cyclohexane and acetone (10 + 2.4, v/v) was used. The RF-value of astaxanthin is 0.14.The limit of detection in vis-absorption is 64 ng / band and the limit of quantification is 92 ng/band. In chemiluminescence the values are 90 ng / band and 115 ng/band. The method offers two independently working measurement modes on a single plate which increase the accuracy of the quantification.
We present a planar chromatographic separation method for the compounds caffeine, artemisinin, and equol, separated on high-performance thin-layer chromatography (HPTLC) silica gel plates. As solvents for separation, methyl t-butyl ether and cyclohexane (1:1, V/V) have been used for equol, cyclohexane and ethyl acetate (7:3, V/V) for artemisinin, and ethyl acetate and acetone (7:3, V/V) for caffeine. After separation, the plate was scanned with a very specific time of flight-direct analysis in real time-mass spectrometry (TOF-DART-MS) system using the (M + 1)+ signals of equol, artemisinin, and caffeine. The (M + 1) peak of artemisinin at 283.13 m/z is clearly detectable, which is the proof that DART-MS is applicable for the quantitative determination of rather instable molecules. The planar set-up of DART source, HPTLC plate and detector inlet in a line showed higher sensitivities compared to desorption at an angle. The optimal detector voltage increases with the molar mass of the analyte, thus an individual determination of optimal detector voltage setting for the different analyte is recommended to achieve the best possible measurement conditions. In conclusion, DART-MS detection in combination with an HPTLC separation allows very specific quantification of all three compounds.
Improved separation of highly toxic contact herbicides paraquat (1,1′-dimethyl-4-4′-bipyridinium), diquat (6,7-dihydrodipyridol[ 1,2-a:2′,1′-c]pyrazine-5,8-di-ium), difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium-methyl sulfate), mepiquat (1,1-dimethyl-piperidinium), and chloromequat (2-chloroethyltrimethylammonium) were presented by high-performance thin-layer chromatography (HPTLC). The quantification is based on a derivatization reaction, using sodium tetraphenylborate. Measurements were made in the wavelength range from 500 to 535 nm, using a light-emitting diode (LED) for excitation purposes, which emits very dense light at 365 nm. For calculations, a new theory of standard addition method was used, thus leading to a minimal error if exactly the same amount of sample content is added as a standard. The method provides a fast and inexpensive approach to quantification of the five most important quats used for plant protection purposes. The method works reliably because it takes into account losses during pre-treatment procedure. The method meets the European legislation limits for paraquat and diquat in drinking water according to United States Environmental Protection Agency (US EPA) method 549.2 which are 680 ng L−1 for paraquat and 720 ng L−1 for diquat. The method of standard addition in planar chromatography can be beneficially used to reduce systematic errors. Although recovery rates of 33.7% to 65.2% are observed, calculated contents according to the method of standard addition lie between 69% and 127% of the theoretical amounts.
Limits of quantification of some neonicotinoid insecticides measured by thin-layer chromatography
(2012)
A simple method to quantify the neonicotinoid insecticides nitenpyram, thiamethoxam, acetamiprid, imidacloprid, thiacloprid and clothianidin directly on an HPTLC-plate is presented. As stationary phase silica gel 60 RP-18WF254 s plates were used and a mixture of methyl-t-butyl ether, 2-butanone, NH3 (25%) (5 + 2+0.1, v/v) was used as solvent. All neonicotinoid insecticides show light absorptions below 300 nm. The calculated limits of quantification (LOQ) by UV-detection are in the range from 12 ng to 26 ng on plate depending on the different insecticides.Nitenpyram can be stained using fast blue salt B, forming red zones. The observed LOQ is 25 ng on plate. Acetamiprid can be specifically stained using phenylglyoxylic acid forming a yellow/green fluorescent compound. The LOQ is 52 ng per spot.The compounds thiamethoxam, acetamiprid, thiacloprid and clothianidin can be transformed into blue fluorescing zones, using a relatively new staining solution. This consists of tetraphenylborate and HCl. This is the first publication mentioning that neonicotinoids undergo this reaction. The calculated limits of quantification are in the range from 10 ng to 27 ng on plate.A simple pre-treatment procedure using an acetonitrile extraction and a Chromabond SiOH clean up procedure leads to overall LOQs for bee samples of 48 to 108 µg/Kg. The method can be used to measure neonicotinoid contaminations of bees.
We present a video-densitometric quantification method for the pain killer known as diclofenac and ibuprofen. These non-steroidal anti-inflammatory drugs were separated on cyanopropyl bonded plates using CH2Cl2, methanol, cyclohexane (95 + 5 + 40, v/v) as mobile phase. The quantification is based on a bio-effective-linked analysis using Vibrio fisheri bacteria. Within 10 min a CCD-camera registered the white light of the light-emitting bacteria. Diclofenac and ibuprofen effectively suppressed the bacterial light emission which can be used for quantification within a linear range of 10 to 2000 ng. The detection limit for ibuprofen is 20 ng and the limit of quantification 26 ng per zone. Measurements were carried out using a 16-bit ST-1603ME CCD camera with 1.56 megapixels (from Santa Barbara Instrument Group, Inc., Santa Barbara, USA). The range of linearity covers more than two magnitudes because the extended Kubelka-Munk expression is used for data transformation. The separation method is inexpensive, fast, and reliable.
Thin-layer chromatography is a rapid and reliable working method for quantification of mycotoxins which is suitable for checking EC legislation aflatoxin limits for dried figs without an RP-18 pre-column cleaning step. We describe normal-phase chromatography on silica gel plates with 2.4:0.05:0.1:0.05 ( v/v ) methyl t -butyl ether-water-methanol-cyclohexane as mobile phase and reversed-phase chromatography on RP-18 plates with methanol-4% aqueous ZnSO 4 solution-ethyl methyl ketone 15:15:3 ( v/v ) as mobile phase. Sample pretreatment was by modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) extraction with tetrahydrofuran or acetone. NaCl was used as QuEChERS salt. Response was a linear function of amount chromatographed in the ranges 3 to 100 pg per zone for aflatoxins B 2 and G 2 , 10 to 350 pg per zone for the aflatoxins B 1 and G 1 , and 0.25 to 2.5 ng per zone for ochratoxin A. Quantification limits for the aflatoxins were between 13 and 35 pg per zone (equivalent to 1.5 and 2.4 ppb, taking the pre-treatment procedure into account). Ochratoxin A was detectable with a limit of quantification of 970 pg per zone, corresponding to 56 ppb in the sample. Normal phase and RP-18 separations work rapidly, reliably, and at low cost. They are also suitable for checking the content of the mycotoxins patulin, penicillic acid, zearalenone, and deoxynivalenol.
A diode array HPTLC method for dequalinium chloride in pharmaceutical preparations is presented. For separation a Nano TLC silica gel plate (Merck) is used with the mobile phase methanol-7.8% aqueous NH(4)(+)CH(3)COO(-) (17:3, v/v) over a distance of 6 cm. Dequalinium chloride shows an R(F) value of 0.58. Pure dequalinium chloride is measured in the wavelength range from 200 to 500 nm and shows several by-products, contour plot visualized in absorption, fluorescence and using the Kubelka-Munk transformation. Scanning of a single track in absorption and fluorescence measuring 600 spectra in the range from 200 to 1100 nm takes 30s. As a sample pre-treatment of an ointment it is simply dissolved in methanol and can be quantified in absorption from 315 to 340 nm. The same separation can also be quantified using fluorescence spectrometry in the range from 355 to 370 nm. A new staining method for dequalinium chloride, using sodium tetraphenyl borate/HCl in water allows a fluorescence quantification in the range from 445 to 485 nm. The linearity range of absorption and fluorescence measurements is from 10 to 2000 ng. Sugar-containing preparations like liquids or lozenges with a reduced sample pre-treatment can be reliably quantified only in fluorescence. The total for the quantification of an ointment sample (measuring four standards and five samples), including all sample pre-treatment steps takes less than 45 min!
We report improved separation of the highly toxic contact herbicides paraquat, diquat, difenzoquat, mepiquat, and chloromequat by HPTLC. Quantification was based on a new derivatization reaction using sodium tetraphenylborate. Measurements were in the wavelength range from 440 to 480 nm or from 440 to 590 nm. An LED emitting very intense light at 365 nm was used for excitation. The quantification limits of paraquat and diquat in water, using improved solid-phase extraction, was in the low ng L −1 range. The linear range covered more than two orders of magnitude. Recovery was investigated for all the compounds, and was insufficient, ranging from 11 to 92%, but the method is inexpensive, rapid, and works reliably.
We present an improved quantification method for urethane found in spirits. The quantification is based on a derivatization reaction using cinnamaldehyde in combination with phosphoric acid. Measurements were carried out in the wavelength range from 445 to 460 nm using a diode-TLC device. An LED was used for illumination purposes. It emits very dense light at 365 nm. The quantification range of urethane is in the lower ng range. By applying 20 µL of sprits, the urethane quantification range is from 320 µg/L to 8.1 mg urethane per litre of spirit. The range of linearity covers nearly two magnitudes. The method is cheap, fast and reliable, and is able to monitor all European legislation limits without time-consuming sample pre-treatments.
HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.
The use of a TLC scanner can be regarded as a key step in high performance thin layer chromatography (HPTLC). Densitometric measurements transform the substance distribution on a TLC plate into digital computer data. Systems that allow quantitative measurements have been available for many years for either fluorescence or ultraviolet absorption measurements, while lately the reflection analysis mode for both types is the most common application. New scanning approaches are designed to aid the analyst who has common demands for TLC-densitometry without using special data, such as scanned images. Two examples that have been developed lately in the laboratories of the authors are described in this paper. These approaches were developed on the basis of current needs for analysts who employ TLC as a tool in research, as well as in routine analysis. One approach is aimed to support analysts in economically disadvantaged areas, where cost intensive apparatus is unsuitable but trace analysis by simple means is required. The other system, allows the spectral determination of chromatographic spots on TLC plates covering the ultraviolet and visible range, thus, revealing highly desired information for the analyst.
A systematic toxicological analysis procedure using high-performance thin layer chromatography in combination with fibre optical scanning densitometry for identification of drugs in biological samples is presented. Two examples illustrate the practicability of the technique. First, the identification of a multiple intake of analgesics: codeine, propyphenazone, tramadol, flupirtine and lidocaine, and second, the detection of the sedative diphenhydramine. In both cases, authentic urine specimens were used. The identifications were carried out by an automatic measurement and computer-based comparison of in situ UV spectra with data from a compiled library of reference spectra using the cross-correlation function. The technique allowed a parallel recording of chromatograms and in situ UV spectra in the range of 197–612 nm. Unlike the conventional densitometry, a dependency of UV spectra by concentration of substance in a range of 250–1000 ng/spot was not observed.
In-situ densitometry for qualitative or quantitative purposes is a key step in thin-layer chromatography (TLC). It is a simple means of quantification by measurement of the optical density of the separated spots directly on the plate. A new scanner has been developed which is capable of measuring TLC or HPTLC (high-performance thin-layer chromatography) plates simultaneously at different wavelengths without damaging the plate surface. Fiber optics and special fiber interfaces are used in combination with a diode-array detector. With this new scanner sophisticated plate evaluation is now possible, which enables use of chemometric methods in HPTLC. Different regression models have been introduced which enable appropriate evaluation of all analytical questions. Fluorescent measurements are possible without filters or special lamps and signal-to-noise ratios can be improved by wavelength bundling. Because of the richly structured spectra obtained from PAH, diode-array HPTLC enables quantification of all 16 EPA PAH on one track. Although the separation is incomplete all 16 compounds can be quantified by use of suitable wavelengths. All these aspects are enable substantial improvement of in-situ quantitative densitometric analysis.
An algorithm is presented that has successfully been utilized in practice for several years. It improves data analysis in chromatography. The program runs in an extremely reliable way and evaluates chromatographic raw data with an acceptable error. The algorithm requires a minimum of preliminaries and integrates even unsmoothed noisy data correctly.
In this paper a high-performance thin-layer chromatography (HPTLC) scanner is presented in which a special fibre arrangement is used as HPTLC plate scanning interface. Measurements are taken with a set of 50 fibres at a distance of 400 to 500 μm above the HPTLC plate. Spatial resolutions on the HPTLC plate of better than 160 μm are possible. It takes less than 2 min to scan 450 spectra simultaneously in a range of 198 to 610 nm. The basic improvement of the item is the use of highly transparent glass fibres which provide excellent transmission at 200 nm and the use of a special fibre arrangement for plate illumination and detection.
A Validated Quantification of Sudan Red Dyes in Spicery using TLC and a 16-bit Flatbed Scanner
(2018)
We present a video-densitometric quantification method for Sudan red dyes in spices and spice mixtures, separated by TLC. Application was done band-wise in small dots using a 5 μL glass pipette. For separation, the RP-18 plates (20 × 20 cm with fluorescent dye; Merck, Germany, 1.05559) were developed in a vertical developing chamber without vapor saturation from the starting point to a distance of 70 mm by using acetonitrile, methanol, and aqueous ammonia solution (25%; 8 + 1.8 + 0.2, v/v) as mobile phase. The quantification is based on direct measurements using an inexpensive 16-bit flatbed scanner for color measurements (in red, green, and blue). Evaluation of only the green channel makes the measurements very specific. For linearization, an extended Kubelka-Munk expression for data transformation was used. The range of linearity covers more than two magnitudes and lies between 20 and 500 ng. The extraction from a 2 g sample with acetonitrile, evaporation, and reconstitution to 200 μL with methanol and the band-wise application (7 mm) of a 10 μL sample allows a statistically defined LOD of less than 500 ppb of Sudan red dyes. To perform the analysis, a separation chamber, RP-18 plates, 5 μL glass pipettes, and a 16-bit flatbed scanner for 105 € are needed; therefore, the separation method is inexpensive, fast, and reliable.
We present a planar chromatographic separation method for the phytoestrogenic active compound equol, separated on RP-18 W (Merck, 1.14296) phase. It could be shown that an ethanolic cattle manure extract contains this phytoestrogenic active compound to a larger amount. As solvents for the mobile phase, hexane, ethyl acetate, and acetone (45:15:10, v/v); acetone and water (15:10, v/v); and n-hexane, CH2Cl2, ethyl acetate, methanol, and formic acid (40:40:20:5:1, v/v) have been used. After separation, a modified yeast estrogen screen (YES) test was applied, using the yeast strain Saccharomyces cerevisiae BJ3505 containing an estrogen receptor. Its activation by equol induces the reporter gene lacZ which encodes the enzyme β-galactosidase. The enzyme activity is measured directly on the TLC plate by using the substrate MUG (4-methylumbelliferyl-β-d-galactopyranoside) or the substrate X-β-Gal (5-bromo-4-chloro-3-indoxyl-β-d-galactopyranoside). β-Galactosidase cleaves MUG into a fluorescing compound. X-β- Gal is also hydrolyzed and then oxidized by oxygen forming the deep-blue dye 5,5′-dibromo-4,4′-dichloro-indigo. Both reactions in combination with a thin-layer chromatography (TLC) separation allow very specific detecting of equol in cattle manure, although that is a very challenging matrix. Preliminary results show that the average content of equol in liquid manure is roughly 60 μg g−1. The value for urine is 50 μg mL−1.