Refine
Year of publication
Document Type
- Conference Proceeding (145) (remove)
Keywords
- Konstruktion (4)
- Produktentwicklung (4)
- Stahl (4)
- TRIZ (4)
- Dünnschichtchromatographie (3)
- Innovation (3)
- Kerbe (3)
- TRIZ methodology (3)
- eco-innovation (3)
- Biogas (2)
- Ecodesign (2)
- Faseroptik (2)
- Finite-Elemente-Methode (2)
- Hochtemperatur (2)
- Kreativität (2)
- Maschinenelement (2)
- Methanisierung (2)
- Plastizität (2)
- Process engineering (2)
- TRIZ Inventive Principles (2)
- design methods (2)
- process engineering (2)
- Abtragung (1)
- Abwasser (1)
- Adsorption (1)
- Arbeitsmaschine (1)
- Artificial intelligence (1)
- Assistive Technology (1)
- Ausbildung (1)
- Automated Invention (1)
- Bioelektrochemische Brennstoffzelle (1)
- Biogasreaktor (1)
- Biologische Methanisierung (1)
- Biomimetics (1)
- Bioreaktor (1)
- CAE (1)
- Cogeneration (1)
- Controlling (1)
- Cross-industry innovation (1)
- Durchmesser (1)
- E-Learning (1)
- Eco Sciences (1)
- Eco-innovation (1)
- Eindringprüfung (1)
- Elektrizitätserzeugung (1)
- Energiepolitik (1)
- Energieversorgung (1)
- Energy Management (1)
- Engineering Creativity (1)
- Engineering creativity (1)
- Engineering education in the age of digitalization (1)
- Entlastungskerbe (1)
- Enzym (1)
- Ermüdung (1)
- Ersatz (1)
- Erziehung (1)
- Eye Tracking (1)
- Eye-Tracking (1)
- Eyetracking, Technisches Zeichnen (1)
- Fault detection (1)
- Flexibilisierung des Lernortes (1)
- Gasanalyse (1)
- Gerichtliche Wissenschaften (1)
- Getriebewelle (1)
- Gewerbebetrieb (1)
- Grid Integration (1)
- Haptics (1)
- Haustechnik (1)
- Herz (1)
- Hochfrequenztechnik (1)
- Hohlform (1)
- Hybridantrieb (1)
- Ideation Performance (1)
- Ideation efficiency (1)
- Ideation performance function (1)
- Ingenieuerwissenschaften (1)
- Instandhaltung (1)
- Integrated product development (1)
- Intelligent Buildings (1)
- Inventive principles (1)
- Knowledge-based Innovation (1)
- Knowledge-based innovation (1)
- Korrelation (1)
- Korrosion (1)
- Kugel (1)
- Lastenverschiebung (1)
- Lumineszenz (1)
- Lupe (1)
- Messung (1)
- Methan (1)
- Microgrids (1)
- Mikrostruktur (1)
- Mikrowellentechnik (1)
- Nanotechnologie (1)
- Naturwissenschaften (1)
- Niedrigenergiehaus (1)
- Online simulation (1)
- PV Applications (1)
- PV System (1)
- Partikel (1)
- Passivhaus (1)
- Plant commissioning (1)
- Problemlösen (1)
- Process innovation (1)
- Process intensification (1)
- Processing (1)
- Profilwelle (1)
- Präsentation (1)
- QFD (1)
- Quality Function Deployment (1)
- Racemisierung (1)
- Ringnut (1)
- Rohrleitung (1)
- Scanner (1)
- Schutz (1)
- Screencast (1)
- Sensortechnik (1)
- Smart Grid Operation (1)
- Smart PV (1)
- Smart Textiles (1)
- Software (1)
- Spannung (1)
- Spektrum (1)
- Strömungsmechanik (1)
- Sustainable Innovation (1)
- Tactile (1)
- Technische Mechanik (1)
- Technischer Bericht (1)
- Thermische Solaranlage (1)
- Thermische Solarenergie (1)
- Thermomechanik (1)
- Trigeneration (1)
- Umweltschutz (1)
- Videoclip (1)
- Wearables (1)
- Wellenabsatz (1)
- Wissenschaft (1)
- Zahnwelle (1)
- cross-industry innovation (1)
- cyclic plasticity (1)
- design education (1)
- environmental education (1)
- glass (1)
- hot work tool steel (1)
- innovation management (1)
- laser material processing (1)
- new product development (1)
- particle coarsening (1)
- pigment paste (1)
- presentation skills (1)
- printing technologies (1)
- project-based learning (1)
- quality function deployment (QFD) (1)
- scanning electron microscope (SEM) (1)
- spatial imagination (1)
- surface treatment (1)
- sustainability (1)
- technical drawings (1)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (145) (remove)
Ein tiefgreifendes Verständnis des zyklischen Plastizitätsverhaltens metallischer Werkstoffe ist sowohl für die Optimierung der Materialeigenschaften als auch für die industrielle Auslegung und Fertigung von Bauteilen von hoher Relevanz. Insbesondere moderne Legierungen wie Duplex-Stähle zeigen unter Lastumkehr aufgrund des komplexen mehrphasigen Gefüges sowie der Neigung zu verschiedenen Ausscheidungsreaktionen einen ausgeprägten Bauschinger-Effekt, welcher bei technischen Umformvorgängen berücksichtigt werden muss. Der Bauschinger-Effekt begründet sich maßgeblich in der Entstehung von Rückspannungen, welche aus dem unterschiedlichen Plastizitätsverhalten der austenitischen und ferritischen Phase resultieren. Instrumentierte Mikroindenter-Versuche in ausgewählten Ferrit- und Austenitkörnern haben gezeigt, dass austenitische Gefügebestandteile durch einen deutlich früheren Fließbeginn sowie eine stärkere Rückplastifizierung während der Entlastung charakterisiert sind. Zudem wurde nachgewiesen, dass Ausscheidungen im Rahmen einer 475°C-Versprödung diesen Phasenunterschied verstärken und somit in einem höheren Bauschinger-Effekt resultieren.
Environmentally-friendly implementation of new technologies and eco-innovative solutions often faces additional secondary ecological problems. On the other hand, existing biological systems show a lesser environmental impact as compared to the human-made products or technologies. The paper defines a research agenda for identification of underlying eco-inventive principles used in the natural systems created through evolution. Finally, the paper proposes a comprehensive method for capturing eco-innovation principles in biological systems in addition and complementary to the existing biomimetic methods and TRIZ methodology and illustrates it with an example.
Cross-industry innovation is commonly understood as identification of analogies and interdisciplinary transfer or copying of technologies, processes, technical solutions, working principles or models between industrial sectors. In general, creative thinking in analogies belongs to the efficient ideation techniques. However, engineering graduates and specialists frequently lack the skills to think across the industry boundaries systematically. To overcome this drawback an easy-to-use method based on five analogies has been evaluated through its applications by students and engineers in numerous experiments and industrial case studies. The proposed analogies help to identify and resolve engineering contradictions and apply approaches of the Theory of Inventive Problem Solving TRIZ and biomimetics. The paper analyses the outcomes of the systematized analogies-based ideation and outlines that its performance continuously grows with the engineering experience. It defines metrics for ideation efficiency and ideation performance function.
This book constitutes the refereed proceedings of the 20th International TRIZ Future Conference, TFC 2020, held online at the University Cluj-Napoca, Romania, in October 2020 and sponsored by the International Federation for Information Processing.
34 chapters were carefully peer reviewed and selected from 91 conference submissions. They are organized in the following thematic sections: computing TRIZ; education and pedagogy; sustainable development; tools and techniques of TRIZ for enhancing design; TRIZ and system engineering; TRIZ and complexity; and cross-fertilization of TRIZ for innovation management.
Sustainable design of equipment for process intensification requires a comprehensive and correct identification of relevant stakeholder requirements, design problems and tasks crucial for innovation success. Combining the principles of the Quality Function Deployment with the Importance-Satisfaction Analysis and Contradiction Analysis of requirements gives an opportunity to define a proper process innovation strategy more reliably and to develop an optimal process intensification technology with less secondary engineering and ecological problems.
Short-term load forecasting (STLF) has been playing a key role in the electricity sector for several decades, due to the need for aligning energy generation with the demand and the financial risk connected with forecasting errors. Following the top-down approach, forecasts are calculated for aggregated load profiles, meaning the sum of singular loads from consumers belonging to a balancing group. Due to the emerging flexible loads, there is an increasing relevance for STLF of individual factories. These load profiles are typically more stochastic compared to aggregated ones, which imposes new requirements to forecasting methods and tools with a bottom-up approach. The increasing digitalization in industry with enhanced data availability as well as smart metering are enablers for improved load forecasts. There is a need for STLF tools processing live data with a high temporal resolution in the minute range. Furthermore, behin-the-meter (BTM) data from various sources like submetering and production planning data should be integrated in the models. In this case, STLF is becoming a big data problem so that machine learning (ML) methods are required. The research project “GaIN” investigates the improvement of the STLF quality of an energy utility using BTM data and innovative ML models. This paper describes the project scope, proposes a detailed definition for a benchmark and evaluates the readiness of existing STLF methods to fulfil the described requirements as a reviewing paper.
The review highlights that recent STLF investigations focus on ML methods. Especially hybrid models gain more and more importance. ML can outperform classical methods in terms of automation degree and forecasting accuracy. Nevertheless, the potential for improving forecasting accuracy by the use of ML models depends on the underlying data and the types of input variables. The described methods in the analyzed publications only partially fulfil the tool requirements for STLF on company level. There is still a need to develop suitable ML methods to integrate the expanded data base in order to improve load forecasts on company level.
Interaction and capturing information from the surrounding is dominated by vision and hearing. Haptics on the other side, widens the bandwidth and could also replace senses (sense switching) for impaired. Haptic technologies are often limited to point-wise actuation. Here, we show that actuation in two-dimensional matrices instead creates a richer input. We describe the construction of a full-body garment for haptic communication with a distributed actuating network. The garment is divided into attachable-detachable panels or add-ons that each can carry a two dimensional matrix of actuating haptic elements. Each panel adds to an enhanced sensoric capability of the human- garment system so that together a 720° system is formed. The spatial separation of the panels on different body locations supports semantic and theme-wise separation of conversations conveyed by haptics. It also achieves directional faithfulness, which is maintaining any directional information about a distal stimulus in the haptic input.
Konstrukteure im Maschinenbau stehen häufig vor der Problemstellung, hochfest vorge-
spannte Schraubenverbindungen und einen durchgehenden Korrosionsschutz zu ver-
einen. Die Normen und Richtlinien bieten hierzu Stand heute keine ausreichenden Ant-
worten. Die Hochschule Offenburg befasst sich im Rahmen einer industriellen Gemein-
schaftsforschung mit der Fragestellung, welchen Einfluss organische Beschichtungen auf
die Vorspannkraft insbesondere bei erhöhten Umgebungstemperaturen haben. In dieser
Arbeit werden die ersten Ergebnisse zum Einfluss der Einzelschichtstärke des Beschich-
tungssystems präsentiert.
The PHOTOPUR project aims to develop a photocatalytic process as a type of AOPs (Advanced Oxidation Processes) for the elimination of plant protection products (PPP) of the cleaning water used to wash sprayers. At INES a PV based energy supply for the photocatalytic cleaning system was developed within the framework of two bachelor theses and assembled as a demonstration unit. Then the system was step by step extended with further process automation features and pushed to a remote operating device. The final system is now available as a mobile unit mounted on a lab table. The latest step was the photocatalytic reactor module which completed the first PHOTOPUR prototype. The system is actually undergoing an intensive testing phase with performance checks at the consortium partners. First results give an overview about the successful operation.
Plant oils may be used as a sustainable, nearly CO2neutral fuel for diesel engines. This work investigates experimentally the particulate and gaseous emissions of diesel engines fuelled with different non-esterified, pure plant oils. The data are collected from three engines: a) Common rail 1.7 liter passenger car engine from Opel AG b) 12.8 liter truck engine from VOLVO c) Truck engine from MAN AG.
The emissions of the MAN engine have been used to perform AMES tests to analyze possible health impacts of plant oil operation. Finally, all emission results with plant oils have been compared to traditional gas oils.
Non-esterified plant oils gain ecological and economical importance, particularly in the EU where it is intended to increase the share of renewable energies. Plant oils do not require any chemical treatment so do not cause secondary pollution. The importance of plant oil will increase in Germany for mobile and stationary applications. The generation co-generation of heat and power is subsidized by the German “Erneuerbares Energiegesetz” and the “Kraft-Wärme-Kopplungsgesetz” when renewable fuels are used such as plant oils..
Plant oils have a much higher viscosity than conventional gas oil. It is mandatory to decrease the oil viscosity by heating prior to injection to assure proper injection and to avoid engine damage due to coke formation in the combustion chamber and at the injection nozzle. The German quality standard of Weihenstephan (RK-Qualitätsstandard 05/2000) for rape seed oil should be followed for use as diesel fuel. The chemical composition of plant oils is appreciably different in comparison to diesel fuels derived from mineral oils suggesting also different emission behavior.
Vorgestellt wird ein Konzept zur biologischen Methanisierung von Wasserstoff direkt in Biogasreaktoren, mit dem durch Membranbegasung der Methangehalt des Biogases auf > 96 % erhöht werden kann. Essentiell zum Erreichen solch hoher Methanwerte sind die Einhaltung eines optimalen pH-Bereichs und die Vermeidung von H2-Akkumulation. Im Falle einer Limitierung der Methanbildungsrate durch den eigentlichen anaeroben Abbauprozess der Biomasse ist auch eine externe Zufuhr von CO2 zur weiteren Methanbildung denkbar. Das Verfahren soll weiter optimiert und in einem von der Deutschen Bundesstiftung Umwelt geförderten Projekt in der Biogasanlage einer regionalen Käserei in der Praxis getestet werden. Die hier angestrebte Kombination aus dezentraler Abfallverwertung und Eigenenergieerzeugung eines lebensmittelverarbeitenden Betriebs unter Einbindung in ein intelligentes Erneuerbare Energien - Konzept soll einen zusätzlichen Mehrwert liefern.
Process engineering industries are now facing growing economic pressure and societies' demands to improve their production technologies and equipment, making them more efficient and environmentally friendly. However unexpected additional technical and ecological drawbacks may appear as negative side effects of the new environmentally-friendly technologies. Thus, in their efforts to intensify upstream and downstream processes, industrial companies require a systematic aid to avoid compromising of ecological impact. The paper conceptualises a comprehensive approach for eco-innovation and eco- design in process engineering. The approach combines the advantages of Process Intensification as Knowledge-Based Engineering (KBE), inventive tools of Knowledge-Based Innovation (KBI), and main principles and best-practices of Eco-Design and Sustainable Manufacturing. It includes a correlation matrix for identification of eco-engineering contradictions and a process mapping technique for problem definition, database of Process Intensification methods and equipment, as well as a set of strongest inventive operators for eco-ideation.
As engineering graduates and specialists frequently lack the advanced skills and knowledge required to run eco-innovation systematically, the paper proposes a new teaching method and appropriate learning materials in the field of eco-innovation and evaluates the learning experience and outcomes. This programme is aimed at strengthening student’s skills and motivation to identify and creatively overcome secondary eco-contradictions in case if additional environmental problems appears as negative side effects of eco-friendly solutions.
Based on a literature analysis and own investigations, authors propose to introduce a manageable number of eco-innovation tools into a standard one-semester design course in process engineering with particular focus on the identification of eco-problems in existing technologies, selection of the appropriate new process intensification technologies (knowledge-based engineering), and systematic ideation and problem solving (knowledge-based innovation and invention).
The proposed educational approach equips students with the advanced knowledge, skills and competences in the field of eco-innovation. Analysis of the student’s work allows one to recommend simple-to-use tools for a fast application in process engineering, such as process mapping, database of eco-friendly process intensification technologies, and up to 20 strongest inventive operators for solving of environmental problems. For the majority of students in the survey, even the small workload has strengthened their self-confidence and skills in eco-innovation
Growing demands for cleaner production and higher eco-efficiency in process engineering require a comprehensive analysis of technical and environmental outcomes of customers and society. Moreover, unexpected additional technical or ecological drawbacks may appear as negative side effects of new environ-mentally friendly technologies. The paper conceptualizes a comprehensive ap-proach for analysis and ranking of engineering and ecological requirements in process engineering in order to anticipate secondary problems in eco-design and to avoid compromising the environmental or technological goals. For this purpose, the paper presents a method based on integration of the Quality Func-tion Deployment approach with the Importance-Satisfaction Analysis for the requirements ranking. The proposed method identifies and classifies compre-hensively the potential engineering and eco-engineering contradictions through analysis of correlations within requirements groups such as stakehold-er requirements (SRs) and technical requirements (TRs), and additionally through cross-relationship between SRs and TRs.
The 40 Altshuller Inventive Principles with numerous sub-principles remain over decades the most frequently applied tool of the Theory of Inventive Problem Solving TRIZ for systematic idea generation. However, their application often requires a concentrated, creative and abstract way of thinking that can be fairly challenging for the newcomers to TRIZ. This paper describes an approach to reduce the abstraction level of inventive sub-principles and presents the results of the idea generation experiment conducted with three groups of undergraduate and graduate students from different years of study in mechanical and process engineering. The students were asked to generate and to record their individual ideas for three design problems using a pre-defined set of classical and modified sub-principles within 10 minutes. The overall outcomes of the experiment support the assumption that the less abstract wording of the modified sub-principles leads to higher number of ideas. The distribution of ideas between the fields of MATCHEM-IBD (Mechanical, Acoustic, Thermal, Chemical, Electrical, Magnetic, Intermolecular, Biological and Data processing) differs significantly between groups using modified and abstract sub-principles.
Classification of TRIZ Inventive Principles and Sub-Principles for Process Engineering Problems
(2019)
The paper proposes a classification approach of 40 Inventive Principles with an extended set of 160 sub-principles for process engineering, based on a thorough analysis of 155 process intensification technologies, 200 patent documents, 6 industrial case studies applying TRIZ, and other sources. The authors define problem-specific sub-principles groups as a more precise and productive ideation technique, adaptable for a large diversity of problem situations, and finally, examine the anticipated variety of ideation using 160 sub-principles with the help of MATCEM-IBD fields.
Industrie 4.0 bedeutet nicht nur einen Wandel der technischen Möglichkeiten und Arbeitsbedingungen, sondern auch einen Bedarf an neuen, sich kontinuierlich weiterentwickelnden Kompetenzen und die Bereitschaft der Beschäftigten, Veränderungen mitzugestalten. Spielerische Ansätze der Kompetenzentwicklung können v.a. bei weiterbildungsfernen Mitarbeitern hilfreich sein, um das komplexe Thema verständlich zu vermitteln. Der Beitrag beschreibt ein Seminarkonzept mit integriertem Brettspiel, mit dem Teilnehmer anhand eines fiktiven Unternehmens (Müller GmbH) die Transformation eines Unternehmens in die Industrie 4.0 spielerisch nachvollziehen. Dieses Konzept erweist sich in einer ersten Evaluation als durchaus vielversprechend.
Model-based analysis of Electrochemical Pressure Impedance Spectroscopy (EPIS) for PEM Fuel Cells
(2019)
Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products, in particular fuel cells, offer an additional observable, that is, the gas pressure. The dynamic coupling of current or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have previously introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. First EPIS experiments on PEM fuel cells have recently been shown [3].
We present a detailed modeling and simulation analysis of EPIS of a PEM fuel cell. We use a 1D+1D continuum model of a fuel/air channel pair with GDL and MEA. Backpressure is dynamically varied, and the resulting simulated oscillation in cell voltage is evaluated to yield the ▁Z_( V⁄p_ca ) EPIS signal. Results are obtained for different transport situations of the fuel cell, giving rise to very complex EPIS shapes in the Nyquist plot. This complexity shows the necessity of model-based interpretation of the complex EPIS shapes. Based on the simulation results, specific features in the EPIS spectra can be assigned to different transport domains (gas channel, GDL, membrane water transport).