Refine
Document Type
- Other (15) (remove)
Has Fulltext
- no (15) (remove)
Is part of the Bibliography
- yes (15)
Keywords
- CST (3)
- HF-Ablation (3)
- CRT (1)
- Cis-Platin (1)
- Götz von Berlichingen (1)
- IVD (1)
- Serendipity (1)
- Substanz (1)
- Transport (1)
- brain machine interface (1)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (15) (remove)
This paper is discussing the development of a wireless Indoor Smart Gardening System with the focus on energy autonomous working. The Smart Gardening System, which is presented in this paper consists of a network of energy autonomous wireless sensor nodes which are used for monitoring important plant parameters like air temperature, soil moisture, pressure or humidity and in future to control an actuator for the plant irrigation and to measure further parameter as light and fertilizer level. Solar energy harvesting is used for powering the wireless nodes without the usage of a battery. Comparable Smart Gardening Systems are usually battery-powered. Furthermore, the overall Smart Gardening System consists of a battery powered gateway based on a Raspberry Pi 3 system, which controls the wireless nodes and collects their sensor data. The gateway is able to send the information to an internet server application and via Wi-Fi to mobile devices. Particularly the architecture of the energy autonomous wireless nodes will be considered because fully energy autonomous wireless networks could not be implemented without special concepts for the energy supply and architecture of the wireless nodes.
Online comment on: "Printing ferromagnetic domains for untethered fast-transforming soft materials"
(2018)
Data Science gilt als eine der wichtigsten Entwicklungen der letzten
Jahre und viele Unternehmen sehen in Data Science die Möglichkeit,
ihre Daten zusätzlich wertschöpfend zu nutzen. Dabei kann es sich um
die Optimierung von Maintenance-Prozessen handeln, um eine bessere
Steuerung der eigenen Preis- und Lagerhaltungsstrategie oder auch
um völlig neue Services und Produkte, die durch Data Science möglich
werden. Die im Unternehmen vorliegenden Daten, an die so hohe Erwartungen
geknüpft wurden, sollen dazu genutzt werden, um Services
und Prozesse effizienter und passgenauer gestalten zu können. Vielfach
gilt Data Science dabei als Allheilmittel: Daten, die über Jahre hinweg
gesammelt wurden und mit zunehmender Geschwindigkeit und Heterogenität
anfallen, sollen endlich nutzbar gemacht werden. Zwar sind die
eingesetzten Techniken und Algorithmen teilweise schon zehn Jahre und
mehr alt, doch erst jetzt entfalten sie im Zusammenspiel mit Big Data
ihr Potenzial im Unternehmensumfeld. Die Erwartungen sind hoch, doch
der Weg zu den neuen Erkenntnissen ist mit hohem Aufwand verbunden
und wird von einigen Unternehmen noch immer unterschätzt.
Für Unternehmen mit einem traditionellen BI-Ansatz stellt Data Science
ein ergänzendes Set von Methoden und Werkzeugen dar, mit deren Hilfe
die Informationsversorgung der Entscheider auf den verschiedenen
hierarchischen Ebenen noch besser gestaltet werden kann. So zum Beispiel,
wenn man mit Data Science feststellt, dass die Wahrscheinlichkeit
für einen Versicherungsabschluss steigt, wenn bei der Auswahl der
anzusprechenden Kunden zusätzliche Daten herangezogen werden, die
zwar bereits vorliegen, aber noch nicht berücksichtigt worden sind. Im
Extremfall werden auch Entscheidungen vollständig automatisiert, die
bisher von Mitarbeiterinnen und Mitarbeitern getroffen wurden. Ein Algorithmus
legt dann fest, wann Ware nachbestellt oder welcher Preis für
den Endkunden festgesetzt wird.
Im vorliegenden E-Book soll ein Überblick über das Gebiet Data Science
gegeben werden. Dabei wird ein besonderes Augenmerk auf das Zusammenspiel
sowie das Mit- und Nebeneinander von Data Science und vorhandenen
BI-Systemen gelegt.
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: Target of the study was to create an accurate anatomic CAD heart rhythm model, and to show its usefulness for cardiac electrophysiological studies and high-frequency ablations. The method is more careful for the patients’ health and has the potential to replace clinical studies due to its high efficiency regarding time and costs.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter. Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiac electrophysiological studies (EPS) and high-frequency (HF) ablations.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST (Computer Simulation Technology, Darmstadt) was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate normal sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter (Fig.). Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiac electrophysiological studies (EPS) and high-frequency (HF) ablations.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST (Computer Simulation Technology, Darmstadt) was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate normal sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter (Fig.). Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
Background: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients (P) with sinus rhythm, reduced left ventricular (LV) ejection fraction (EF) and electrical ventricular desynchronization. The aim of the study was to evaluate electrical interventricular delay (IVD) and left ventricular delay (LVD) in right ventricular (RV) pacemaker pacing before upgrading to CRT BV pacing.
Methods: HF P (n=11, age 69.0 ± 7.9 years, 1 female, 10 males) with DDD pacemaker (n=10), DDD defibrillator (n=1), RV pacing, New York Heart Association (NYHA) class 3.0 ± 0.2 and 24.5 ± 4.9 % LVEF were measured by surface ECG and transesophageal bipolar LV ECG before upgrading to CRT defibrillator (n=8) and CRT pacemaker (n=3). IVD was measured between onset of QRS in the surface ECG and onset of LV signal in the transesophageal ECG. LVD was measured between onset and offset of LV signal in the transesophageal ECG. CRT atrioventricular (AV) and BV pacing delay were optimized by impedance cardiography.
Results: Interventricular and intraventricular desynchronization in RV pacemaker pacing were 228.2 ± 44.8 ms QRS duration, 86.5 ± 32.8ms IVD, 94.4 ± 23.8ms LVD, 2.6 ± 0.8 QRS-IVD-ratio with correlation between IVD and QRS-IVD-ratio (r=-0.668 P=0.0248) and 2.3 ± 0.7 QRS-LVD-ratio. The LVEF-IVD-ratio was 0.3 ± 0.1 with correlation between IVD and LVEF-IVD-ratio (r=-0.8063 P=0.00272) and with correlation between QRS duration and LVEF-IVD-ratio (r=-0.7251 P=0.01157). Optimal sensing and pacing AV delay were 128.3 ± 24.8 ms AV delay after atrial sensing (n=6) and 173.3 ± 40.4 ms AV delay after atrial pacing (n=3). Optimal BV pacing delay was -4.3 ± 11.3 ms between LV and RV pacing (n=7). During 30.4 ± 29.6 month CRT follow-up, the NYHA class improved from 3.1 ± 0.2 to 2.2 ± 0.3.
Conclusions: Transesophageal electrical IVD and LVD in RV pacemaker pacing may be additional useful ventricular desynchronization parameters to improve P selection for upgrading RV pacemaker pacing to CRT BV pacing.
Die drei großen Hersteller von Cochlea-Implantat (CI)-Systemen ermöglichen es klinischen Audiologen, die Mikrofoneigenschaften der meisten CI-Sprachprozessoren zu prüfen. Dazu können bei diesen Sprachprozessoren Monitorkopfhörer angeschlossen und das/die Mikrofon(e) inklusive eines Teils der Signalvorverarbeitung abgehört werden. Präzise Angaben dazu, mit welchen Stimuli, bei welchem Pegel und nach welchem Kriterium diese Prüfung stattfinden soll, machen die CI-Hersteller nicht. Auf Basis dieser Prüfung soll der Audiologe dann über die Funktion der Mikrofone und damit darüber entscheiden, ob der betreffende Sprachprozessor an den Hersteller eingeschickt wird oder nicht.
Zur Objektivierung der CI-Sprachprozessor-Mikrofon-Prüfung haben wir eine Testbox entwickelt, mit der alle abhörbaren aktuellen CI-Sprachprozessoren der drei großen Hersteller geprüft werden können. Die Box wurde im 3D-Druck-Verfahren hergestellt. Der zu prüfende Sprachprozessor wird in die Messbox eingehängt und über einen darin verbauten Lautsprecher mit definierten Prüfsignalen (Sinustöne unterschiedlicher Frequenz) beschallt. Das Mikrofonsignal wird über das Kabel der Monitorkopfhörer herausgeführt und mit einer Shifting- and Scaling-Schaltung in einen Spannungsbereich transformiert, der für die AD-Wandlung mit einem Mikrokontroller (ATmega1280 verbaut auf einem Arduino Mega) geeignet ist. Derselbe Mikrokontroller übernimmt über einen eigens gebauten DA-Wandler die Ausgabe der Sinustöne über den Lautsprecher. Signalaufnahme und –wiedergabe erfolgen mit jeweils 38,5 kHz Samplingrate. Der für jede Frequenz über mehrere Perioden des Prüfsignals ermittelte Effektivwert wird mit dem Effektivwert, der mit einem neuwertigen Referenzprozessor für diese Frequenz gemessen wurde, verglichen. Die Messergebnisse werden graphisch auf einem Display ausgegeben.
Derzeit läuft eine erste Datenerhebung mit in der Klinik subjektiv auffällig gewordenen CI-Sprachprozessoren, die anschließend in der Messbox untersucht werden. So sollen realistische Schwellen für kritische Abweichungen von den Referenz-Effektivwerten ermittelt werden. Im weiteren Verlauf sollen dann Hit und False Alarm-Raten der subjektiven Prüfung bestimmt werden.
Das normalhörende auditorische System ist in der Lage, interaurale Zeit- bzw. Phasendifferenzen
zur verbesserten Signaldetektion im Störgeräusch zu nutzen. Dieses Phänomen wird
häufig als binaurale Entmaskierung bezeichnet und ist sowohl bei einfachen Signalen wie Sinustönen,
als auch bei Sprachsignalen im Störgeräusch wirksam. Vorangegangene Studien
haben gezeigt, dass binaurale Entmaskierung eingeschränkt auch bei bilateralen CI-Trägern
beobachtbar ist (Zirn et al., 2016).
Aktuelle Ergebnisse zeigen, dass die binaurale Entmaskierung sensitiv gegenüber der bilateralen
CI-Anpassung ist. So lässt sich der Effekt durch tonotopen Abgleich und Herausstellen
eines apikalen Feinstrukturkanals modulieren. Steigerungen der binauralen Entmaskierung
um bis zu 1,5 dB sind auf diese Weise gegenüber der konventionellen CI-Anpassung möglich.
Allerdings variiert der Einfluss der CI-Anpassung interindividuell erheblich.
The ability to detect a target signal masked by noise is improved in normal-hearing listeners
when interaural phase differences (IPDs) between the ear signals exist either in the masker or in
the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a
coding strategy providing the best possible access to IPDs is highly desirable. Outcomes of a
previous study (Zirn, Arndt et al. 2016) revealed that a subset of BiCI users showed improved
IPD detection thresholds with the fine structure processing strategy FS4 compared to the
constant rate strategy HDCIS using narrowband stimuli. In contrast, little differences between
the coding strategies were found for broadband stimuli with regard to binaural speech
intelligibility level differences (BILD) as an estimate of binaural unmasking. Compared to normalhearing
listeners (7.5 ± 1.2 dB) BILD were small in BiCI users (around 0.5 dB with both coding
strategies).
In the present work, we investigated the influence of binaural fitting parameters on BILD. In our
cohort of BiCI users many were implanted with electrode arrays differing in length left versus
right. Because this length difference typically corresponded to the distance of two electrode
contacts the first modification of bilateral fitting was a tonotopic adjustment by deactivation of the
most apical electrode contact on the side with the deeper inserted array (tonotopic approach).
The second modification was the isolation of the residual, most apical electrode contacts by
deactivation of the basally adjacent electrode contact on each side (tonotopic sparse approach).
Applying these modifications, BILD improved by up to 1.5 dB.