Refine
Year of publication
Document Type
- Conference Proceeding (93)
- Article (unreviewed) (18)
- Article (reviewed) (12)
- Part of a Book (8)
- Report (1)
Has Fulltext
- no (132) (remove)
Keywords
- Kommunikation (11)
- Eingebettetes System (8)
- Intelligentes Stromnetz (4)
- Sicherheit (4)
- Energieversorgung (3)
- Messung (3)
- Sensortechnik (3)
- Applikation (2)
- Drahtloses lokales Netz (2)
- Internet (2)
Institute
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
The excessive control signaling in Long Term Evolution networks required for dynamic scheduling impedes the deployment of ultra-reliable low latency applications. Semi-persistent scheduling was originally designed for constant bit-rate voice applications, however, very low control overhead makes it a potential latency reduction technique in Long Term Evolution. In this paper, we investigate resource scheduling in narrowband fourth generation Long Term Evolution networks through Network Simulator (NS3) simulations. The current release of NS3 does not include a semi-persistent scheduler for Long Term Evolution module. Therefore, we developed the semi-persistent scheduling feature in NS3 to evaluate and compare the performance in terms of uplink latency. We evaluate dynamic scheduling and semi-persistent scheduling in order to analyze the impact of resource scheduling methods on up-link latency.
Vehicle-to-Everything (V2X) communication promises improvements in road safety and efficiency by enabling low-latency and reliable communication services for vehicles. Besides using Mobile Broadband (MBB), there is a need to develop Ultra Reliable Low Latency Communications (URLLC) applications with cellular networks especially when safety-related driving applications are concerned. Future cellular networks are expected to support novel latencysensitive use cases. Many applications of V2X communication, like collaborative autonomous driving requires very low latency and high reliability in order to support real-time communication between vehicles and other network elements. In this paper, we classify V2X use-cases and their requirements in order to identify cellular network technologies able to support them. The bottleneck problem of the medium access in 4G Long Term Evolution(LTE) networks is random access procedure. It is evaluated through simulations to further detail the future limitations and requirements. Limitations and improvement possibilities for next generation of cellular networks are finally detailed. Moreover, the results presented in this paper provide the limits of different parameter sets with regard to the requirements of V2X-based applications. In doing this, a starting point to migrate to Narrowband IoT (NB-IoT) or 5G - solutions is given.
The next generation cellular networks are expected to improve reliability, energy efficiency, data rate, capacity and latency. Originally, Machine Type Communication (MTC) was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc., but there is additional demand around applications with low latency requirements, like industrial automation, driver-less cars, and so on. Improvements are required in 4G Long Term Evolution (LTE) networks towards the development of next generation cellular networks for providing very low latency and high reliability. To this end, we present an in-depth analysis of parameters that contribute to the latency in 4G networks along with a description of latency reduction techniques. We implement and validate these latency reduction techniques in the open-source network simulator (NS3) for narrowband user equipment category Cat-Ml (LTE-M) to analyze the improvements. The results presented are a step towards enabling narrowband Ultra Reliable Low Latency Communication (URLLC) networks.
Integration of BACNET OPC UA-Devices Using a JAVA OPC UA SDK Server with BACNET Open Source Library
(2014)
Narrowband IoT (NB-IoT) as a radio access technology for the cellular Internet of Things (cIoT) is getting more traction due to attractive system parameters, new proposals in the 3 rd Generation Partnership Project (3GPP) Release 14 for reduced power consumption and ongoing world-wide deployment. As per 3GPP, the low-power and wide-area use cases in 5G specification will be addressed by the early NB-IoT and Long-Term Evolution for Machines (LTE-M) based technologies. Since these cIoT networks will operate in a spatially distributed environment, there are various challenges to be addressed for tests and measurements of these networks. To meet these requirements, unified emulated and field testbeds for NB-IoT-networks were developed and used for extensive performance measurements. This paper analyses the results of these measurements with regard to RF coverage, signal quality, latency, and protocol consistency.
IPv6 over resource-constrained devices (6Lo) emerged as a de-facto standard for the Internet of Things (IoT) applications especially in home and building automation systems. We provide results of an investigation of the applicability of 6LoWPAN with RPL mesh networks for home and building automation use cases. The proper selection of Trickle parameters and neighbor reachable time-outs is important in the RPL protocol suite to respond efficiently to any path failure. These parameters were analyzed in the context of energy consumption w.r.t the number of control packets. The measurements were performed in an Automated Physical Testbeds (APTB). The results match the recommendation by RFC 7733 for selecting various parameters of RPL protocol suite. This paper shows the relationship between various RPL parameters and control traffic overhead during network rebuild. Comparative measurement results with Bluetooth Low Energy (BLE) in this work showed that 6Lo with RPL outperformed BLE in this use case with less control traffic overheads.
Android is an operating system which was developed for use in smart mobile phones and is the current leader in this market. A lot of efforts are being spent to make Android available to the embedded world, as well. Many embedded systems do not have a local GUI and are therefore called headless devices. This paper presents the results of an analysis of the general suitability of Anroid in headless embedded systems and ponders the advantages and disadvantages. It focuses on the hardware related issues, i.e. to what extent Android supports hardware peripherals normally used in embedded systems.
Wireless Sensor Networks (WSN) have emerged as interesting topic in the research community due to its manifold applications. One of the main challenges of this field is the energy consumption of the nodes, which typically is quite restricted due to the required lifetime of such WSNs. To solve that problem several energy-saving MAC protocols have been developed so far. One of them recently presented by the authors is the so-called SmartMAC as an extension to the IEEE802.15.4 standard. In this paper, we present the implementation details of the porting of the SmartMAC protocol to the discrete event network simulator NS3. We develop this module for NS3 to simulate the performance, multi node execution, and multi node configuration. Along with this model, we also present an energy model for the evaluation of the energy consumption. The current implementation in NS3 is based on the LR-WPAN (Low-Rate Wireless Personal Area Networks) as specified by the IEEE802.15.4 (2006) standard. The simulation results show that the SmartMAC with its sleep and wake-up mechanisms for the transceivers, is significantly more efficient than the current NS3 MAC (Medium Access Control) scheme.
Die zunehmende Anzahl von Transistoren mit immer kleineren Strukturgrößen führt zu einer zunehmenden Leistungsaufnahme in modernen Prozessoren. Das gilt insbesondere für High-End Prozessoren, die mit einer hohen Taktfrequenz betrieben werden. Die aufgenommene Leistung wird in Wärme umgewandelt, die in einer Temperaturerhöhung der Prozessoren resultiert. Hohe Betriebstemperaturen verursachen u.a. eine verringerte Rechenleistung, eine kürzere Lebensdauer des Prozessors und höhere Leckströme. Aus diesen Gründen wird aktives, dynamisches thermisches Management immer wichtiger. Dieser Beitrag stellt eine Erweiterung zu dem Standard- Linux-Scheduler in der Kernel-Version 3.0 für eingebettete Systeme vor: einen PID-Regler, der unter Angabe einer Solltemperatur eine dynamische Frequenz- und Spannungsskalierung durchführt. Die Experimente auf dem Freescale LMX6 Quadcore-Prozessor zeigen, dass der PID-Regler die Betriebstemperatur des Prozessors an die Solltemperatur regeln kann. Er ist die Grundlage für eine in Zukunft zu entwickelnde prädiktive Regelung.
Experiences with a telecare platform integration of ZigBee sensors into a middleware platform
(2012)
The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
The M-Bus protocol (EN13757) is in widespread use for metering applications within home area and neighborhood area networks, but lacks a strict specification. This may lead to incompatibilities in real-life installations and to problems in the deployment of new M-Bus networks. This paper presents the development of a novel testbed to emulate physical Metering Bus (M-Bus) networks with different topologies and to allow the flexible verification of real M-Bus devices in real-world scenarios. The testbed is designed to support device manufacturers and service technicians in test and analysis of their devices within a specific network before their installation. The testbed is fully programmable, allowing flexible changes of network topologies, cable lengths and types. Itis easy to use, as only the master and the slaves devices have to be physically connected. This allows to autonomously perform multiple tests, including automated regression tests. The testbed is available to other researchers and developers. We invite companies and research institutions to use this M-Bus testbed to increase the common knowledge and real-world experience.