Refine
Document Type
- Article (reviewed) (7) (remove)
Is part of the Bibliography
- yes (7) (remove)
Keywords
- Problemlösen (2)
- TRIZ (2)
- Erfolg (1)
- Gefühl (1)
- Kreativität (1)
- Mathematik (1)
- Produkt (1)
- Produktentwicklung (1)
- Technik (1)
Economic growth and ecological problems motivate industries to apply eco-friendly technologies and equipment. However, environmental impact, followed by energy and material consumption still remain the main negative implications of the technological progress in process engineering. Based on extensive patent analysis, this paper assigns more than 250 identified eco-innovation problems and requirements to 14 general eco-categories with energy consumption and losses, air pollution, and acidification as top issues. It defines primary eco-engineering contradictions, in case eco-problems appear as negative side effects of the new technologies, and secondary eco-engineering contradictions, if eco-friendly solutions have new environmental drawbacks. The study conceptualizes a correlation matrix between the eco-requirements for prediction of typical eco-contradictions on example of processes involving solids handling. Finally, it summarizes major eco-innovation approaches including Process Intensification in process engineering, and chronologically reviews 66 papers on eco-innovation adapting TRIZ methodology. Based on analysis of 100 eco-patents, 58 process intensification technologies, and literature, the study identifies 20 universal TRIZ inventive principles and sub-principles that have a higher value for environmental innovation.
Systemic Constellations are a phenomenological approach to resolving personal, professional and organizational issues. They offer a way of mapping a present reality, working at the source of the hidden dynamics and moving to a resolution. This systemic approach often delivers surprising and unexpected insights while also offering the possibility to analyze and solve organizational problems. Rational analysis provides the whole picture of the problem which often turns out to be too complex for a decision making. Systemic constellations can help to simplify and clarify the situation and inform what has to happen next [8], [17]. The outcomes of systemic constellations as an additional resource for solving comprehensive technical problems have not yet been sufficiently investigated. In structural constellation work dealing with technical problems, the individuals who are involved in the problem situation are used to represent different system components, substances or fields. A moderator voices the feedback from the representatives concerning their feelings or intuitive movements, and points to possible solutions. For example, a moderator places the representatives somewhere in the room, develops a three-dimensional picture of the constellation of the analyzed situation and tries to expose the factors empowering or blocking the way towards constructive solutions [13]. This paper explores the theoretical background and practical outcomes of the systemic constellation method for technical problem solving. It presents some case study work which has been conducted in recent years, and then discusses its findings and implications. The research outlined in this paper demonstrates that the noteworthy contribution of structural constellation work for problem solving is typically the result of a combination of functional analysis and the feeling-as-information principle. The constellation work helps, at first, to reveal the subjective experiences, such as feelings, moods, emotions, and bodily sensations, and then to accept them as a source of objective information relevant to the decision making process. In accordance with the latest research [19], the use of feelings as a source of information follows the same principles as the use of any other information. This paper provides the structures of some standard templates and types of constellation work for technical problems, and discusses the preconditions for their application.