### Refine

#### Document Type

- Article (reviewed) (5) (remove)

#### Is part of the Bibliography

- yes (5) (remove)

#### Keywords

- Anisotropie (1)
- Finite element method (1)
- Guided waves (1)
- Keilwelle (1)
- Lasertechnologie (1)
- Schallwelle (1)
- Surface acoustic waves (1)
- Ultraschall (1)
- Wedge waves (1)

Propagation of acoustic waves is considered in a system consisting of two stiff quarter-spaces connected by a planar soft layer. The two quarter-spaces and the layer form a half-space with a planar surface. In a numerical study, surface waves have been found and analyzed in this system with displacements that are localized not only at the surface, but also in the soft layer. In addition to the semi-analytical finite element method, an alternative approach based on an expansion of the displacement field in a double series of Laguerre functions and Legendre polynomials has been applied.
It is shown that a number of branches of the mode spectrum can be interpreted and remarkably well described by perturbation theory, where the zero-order modes are the wedge waves guided at a rectangular edge of the stiff quarter-spaces or waves guided at the edge of a soft plate with rigid surfaces.
For elastic moduli and densities corresponding to the material combination PMMA–silicone–PMMA, at least one of the branches in the dispersion relation of surface waves trapped in the soft layer exhibits a zero-group velocity point.
Potential applications of these 1D guided surface waves in non-destructive evaluation are discussed.

In numerical calculations, guided acoustic waves, localized in two spatial dimensions, have been shown to exist and their properties have been investigated in three different geometries, (i) a half-space consisting of two elastic media with a planar interface inclined to the common surface, (ii) a wedge made of two elastic media with a planar interface, and (iii) the free edge of an elastic layer between two quarter-spaces or two wedge-shaped pieces of a material with elastic properties and density differing from those of the intermediate layer.
For the special case of Poisson media forming systems (i) and (ii), the existence ranges of these 1D guided waves in parameter space have been determined and found to strongly depend on the inclination angle between surface and interface in case (i) and the wedge angle in case (ii). In a system of type (ii) made of two materials with strong acoustic mismatch and in systems of type (iii), leaky waves have been found with a high degree of spatial localization of the associated displacements, although the two materials constituting these structures are isotropic.
Both the fully guided and the leaky waves analyzed in this work could find applications in non-destructive evaluation of composite structures and should be accounted for in geophysical prospecting, for example.
A critical comparison is presented of the two computational approaches employed, namely a semi-analytical finite element scheme and a method based on an expansion of the displacement field in a double series of special functions.

The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized.

Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges.