Refine
Document Type
- Article (reviewed) (12) (remove)
Is part of the Bibliography
- yes (12) (remove)
Keywords
- Intelligentes Stromnetz (3)
- Eingebettetes System (2)
- Automatisierungssystem (1)
- BACnet (1)
- Dissens (1)
- Flugdatenregistriergerät (1)
- Gateway (1)
- Gruppe (1)
- Intelligenter Zähler (1)
- Internet of Things (1)
Time-Sensitive Networking (TSN) is the most promising time-deterministic wired communication approach for industrial applications. To extend TSN to "IEEE 802.11" wireless networks two challenging problems must be solved: synchronization and scheduling. This paper is focused on the first one. Even though a few solutions already meet the required synchronization accuracies, they are built on expensive hardware that is not suited for mass market products. While next Wi-Fi generation might support the required functionalities, this paper proposes a novel method that makes possible high-precision wireless synchronization using commercial low-cost components. With the proposed solution, a standard deviation of synchronization error of less than 500 ns can be achieved for many use cases and system loads on both CPU and network. This performance is comparable to modern wired real-time field busses, which makes the developed method a significant contribution for the extension of the TSN protocol to the wireless domain.
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
Embedded Analog Physical Unclonable Function System to Extract Reliable and Unique Security Keys
(2020)
Internet of Things (IoT) enabled devices have become more and more pervasive in our everyday lives. Examples include wearables transmitting and processing personal data and smart labels interacting with customers. Due to the sensitive data involved, these devices need to be protected against attackers. In this context, hardware-based security primitives such as Physical Unclonable Functions (PUFs) provide a powerful solution to secure interconnected devices. The main benefit of PUFs, in combination with traditional cryptographic methods, is that security keys are derived from the random intrinsic variations of the underlying core circuit. In this work, we present a holistic analog-based PUF evaluation platform, enabling direct access to a scalable design that can be customized to fit the application requirements in terms of the number of required keys and bit width. The proposed platform covers the full software and hardware implementations and allows for tracing the PUF response generation from the digital level back to the internal analog voltages that are directly involved in the response generation procedure. Our analysis is based on 30 fabricated PUF cores that we evaluated in terms of PUF security metrics and bit errors for various temperatures and biases. With an average reliability of 99.20% and a uniqueness of 48.84%, the proposed system shows values close to ideal.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
Exploiting Dissent: Towards Fuzzing-based Differential Black Box Testing of TLS Implementations
(2017)
The Transport Layer Security (TLS) protocol is one of the most widely used security protocols on the internet. Yet do implementations of TLS keep on suffering from bugs and security vulnerabilities. In large part is this due to the protocol's complexity which makes implementing and testing TLS notoriously difficult. In this paper, we present our work on using differential testing as effective means to detect issues in black-box implementations of the TLS handshake protocol. We introduce a novel fuzzing algorithm for generating large and diverse corpuses of mostly-valid TLS handshake messages. Stimulating TLS servers when expecting a ClientHello message, we find messages generated with our algorithm to induce more response discrepancies and to achieve a higher code coverage than those generated with American Fuzzy Lop, TLS-Attacker, or NEZHA. In particular, we apply our approach to OpenssL, BoringSSL, WolfSSL, mbedTLS, and MatrixSSL, and find several real implementation bugs; among them a serious vulnerability in MatrixSSL 3.8.4. Besides do our findings point to imprecision in the TLS specification. We see our approach as present in this paper as the first step towards fully interactive differential testing of black-box TLS protocol implementations. Our software tools are publicly available as open source projects.
There is an increasing demand by an ever-growing number of mobile customers for transfer of rich media content. This requires very high bandwidth which either cannot be provided by the current cellular systems or puts pressure on the wireless networks, affecting customer service quality. This study introduces COARSE – a novel cluster-based quality-oriented adaptive radio resource allocation scheme, which dynamically and adaptively manages the radio resources in a cluster-based two-hop multi-cellular network, having a frequency reuse of one. COARSE is a cross-layer approach across physical layer, link layer and the application layer. COARSE gathers data delivery-related information from both physical and link layers and uses it to adjust bandwidth resources among the video streaming end-users. Extensive analysis and simulations show that COARSE enables a controlled trade-off between the physical layer data rate per user and the number of users communicating using a given resource. Significantly, COARSE provides 25–75% improvement in the computed user-perceived video quality compared with that obtained from an equivalent single-hop network.
Digital networked communications are the key to all Internet-of-Things applications, especially to smart metering systems and the smart grid. In order to ensure a safe operation of systems and the privacy of users, the transport layer security (TLS) protocol, a mature and well standardized solution for secure communications, may be used. We implemented the TLS protocol in its latest version in a way suitable for embedded and resource-constrained systems. This paper outlines the challenges and opportunities of deploying TLS in smart metering and smart grid applications and presents performance results of our TLS implementation. Our analysis shows that given an appropriate implementation and configuration, deploying TLS in constrained smart metering systems is possible with acceptable overhead.
The increasing number of transistors being clocked at high frequencies of modern microprocessors lead to an increasing power consumption, which calls for an active dynamic thermal management. In a research project a system environment has been developed, which includes thermal modeling of the microprocessor in the board system, a software environment to control the characteristics of the system’s timing behavior, and a modified Linux scheduler, which is enhanced with a prediction controller. Measurement results are shown for this development for a Freescale i.MX6Q quad-core microprocessor.