Refine
Year of publication
Document Type
- Article (reviewed) (51) (remove)
Is part of the Bibliography
- yes (51) (remove)
Keywords
- Management (4)
- Corporate Governance (2)
- Druck (2)
- Schallwelle (2)
- Unternehmen (2)
- Akustik (1)
- Anisotropie (1)
- CAD (1)
- COS ERM 2017 (1)
- Claims (1)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (51) (remove)
Modern Franciscan Leadership
(2020)
This article combines two important areas of practical theology: Monastic rules and leadership in a cloistral organisation, using the Rule of Saint Francis as a prominent example. The aim of this research is to examine how living Christian tradition in a monastic order affects leadership today, discovering how the Rule and Franciscan spirituality impact managing a convent. The research question is answered within this inductive research applying the methodology of the ‘theology in four voices.’ Based on the results, it is possible to build a coherent leadership system based on Biblical and Franciscan sources.
Propagation of acoustic waves is considered in a system consisting of two stiff quarter-spaces connected by a planar soft layer. The two quarter-spaces and the layer form a half-space with a planar surface. In a numerical study, surface waves have been found and analyzed in this system with displacements that are localized not only at the surface, but also in the soft layer. In addition to the semi-analytical finite element method, an alternative approach based on an expansion of the displacement field in a double series of Laguerre functions and Legendre polynomials has been applied.
It is shown that a number of branches of the mode spectrum can be interpreted and remarkably well described by perturbation theory, where the zero-order modes are the wedge waves guided at a rectangular edge of the stiff quarter-spaces or waves guided at the edge of a soft plate with rigid surfaces.
For elastic moduli and densities corresponding to the material combination PMMA–silicone–PMMA, at least one of the branches in the dispersion relation of surface waves trapped in the soft layer exhibits a zero-group velocity point.
Potential applications of these 1D guided surface waves in non-destructive evaluation are discussed.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
The three lines of defense model (TLoD) aims to provide a simple and effective way to improve coordination and enhance communications on risk management and control by clarifying the essential roles and duties of different governance functions. Without effective coordination of these governance functions, work can be duplicated or key risks may be missed or misjudged. To address these challenges, professional standards recommend that the chief audit executive (CAE) coordinates activities with other internal and external governance stakeholders (assurance providers). We consider survey responses from 415 CAEs from Austria, Germany, and Switzerland to analyze determinants that help to implement the TLoD without any challenges and to explore the extent of (coordination) challenges between the internal audit function and the respective governance stakeholders. Our results show a great variance in the extent of coordination challenges dependent on different determinants and the respective governance stakeholder.
This work compares the performance of Bluetooth Mesh implementations on real chipsets against the ideal implementation of the specification. Measurements are taken in experimental settings and reveal non-idealities in the underlying Bluetooth Low Energy specification in real chipsets and in the implementation of Mesh, which introduces an unruly transmission as well as reception behavior. These effects lead to an impact on transmission rate, reception rate, latency, as well as a more significant impact on the average power consumption.
Prediction of Claims in Export Credit Finance: A Comparison of Four Machine Learning Techniques
(2020)
This study evaluates four machine learning (ML) techniques (Decision Trees (DT), Random Forests (RF), Neural Networks (NN) and Probabilistic Neural Networks (PNN)) on their ability to accurately predict export credit insurance claims. Additionally, we compare the performance of the ML techniques against a simple benchmark (BM) heuristic. The analysis is based on the utilisation of a dataset provided by the Berne Union, which is the most comprehensive collection of export credit insurance data and has been used in only two scientific studies so far. All ML techniques performed relatively well in predicting whether or not claims would be incurred, and, with limitations, in predicting the order of magnitude of the claims. No satisfactory results were achieved predicting actual claim ratios. RF performed significantly better than DT, NN and PNN against all prediction tasks, and most reliably carried their validation performance forward to test performance.
For the standard ISO 16842 cruciform test specimen, stresses obtained from the gauge area are far below the ultimate tensile strength due to high stress concentrations at the slit ends which lead to premature failure. Objective: To introduce a new cruciform specimen design which has been optimized with respect to the determination of yield surfaces. Methods: The proposed design differs from the ISO standard by an additional thinning of the gauge area and wider slits in the arms to avoid stress singularities. Compared to other cruciform test piece designs found in the literature, the stress distribution is still homogeneous and there is no need to reduce the size of the gauge area, thanks to the specimen’s well-balanced proportions. Results: Biaxial tensile tests have been conducted with aluminium 5754 alloy samples of different thicknesses. For the standard cruciform test piece, the maximum strain achieved at the gauge area is only 25% of the fracture strain. The optimized cruciform test piece can attain about 66% of the fracture strain before breaking. Conclusions: The optimized specimen design enables the measurement of yield surfaces at higher stress levels. In case of other materials such as elastomers, the slit length has be to adjusted accordingly.
The age of globalisation is characterised by
increased competition. An opportunity to
succeed in the face of increasing competition
lies in the digitisation of production companies. This article is dedicated to the design of
a three-stage model platform of Industry 4.0,
which focuses on the consistency of processes
from the customer to the supplier at all company levels. The model platform is followed by
an overview of the transformation steps for
evaluating and shaping progress on the way
to become a digitised production company.
In numerical calculations, guided acoustic waves, localized in two spatial dimensions, have been shown to exist and their properties have been investigated in three different geometries, (i) a half-space consisting of two elastic media with a planar interface inclined to the common surface, (ii) a wedge made of two elastic media with a planar interface, and (iii) the free edge of an elastic layer between two quarter-spaces or two wedge-shaped pieces of a material with elastic properties and density differing from those of the intermediate layer.
For the special case of Poisson media forming systems (i) and (ii), the existence ranges of these 1D guided waves in parameter space have been determined and found to strongly depend on the inclination angle between surface and interface in case (i) and the wedge angle in case (ii). In a system of type (ii) made of two materials with strong acoustic mismatch and in systems of type (iii), leaky waves have been found with a high degree of spatial localization of the associated displacements, although the two materials constituting these structures are isotropic.
Both the fully guided and the leaky waves analyzed in this work could find applications in non-destructive evaluation of composite structures and should be accounted for in geophysical prospecting, for example.
A critical comparison is presented of the two computational approaches employed, namely a semi-analytical finite element scheme and a method based on an expansion of the displacement field in a double series of special functions.
Open markets, international trade and foreign direct investments are a source of prosperity in challenging times. This Special Section looks at developed economies and emerging markets, also taking into account the role of trade for impactful capacity-building in least developed countries (LDCs). Specific emphasis is placed on financing economic development and trade, analysing what roles trade and development finance should play in the quest for an efficient mobilisation of private capital for growth, trade and development.
Bei der Auslegung von geschraubten Stirnplattenstößen mit elastomerer Trennschicht dürfen gemäß Eurocode 3 lediglich die Flansche für eine Übertragung der Schnittgrößen berücksichtigt werden. Unsere Untersuchungen zeigen, dass auch die Stege für eine Bemessung herangezogen werden sollten. Sie tragen zu einer gleichmäßigeren Spannungsverteilung im Elastomerlager bei und erlauben somit höhere Belastungen bei gleichbleibenden Abmessungen.
Basis der FE-Analysen sind ein- und zweiachsige Zug- und Druckversuche, die das komplexe Materialverhalten der elastomeren Trennschicht erfassen. Die Übereinstimmung von Messung und Simulation ist sehr gut, was insbesondere auf das verwendete Materialgesetz zurückzuführen ist: ein nicht-linear viskoelastischer Ansatz in Kombination mit dem hyperelastischen Marlow-Modell.
Es hat sich herausgestellt, dass der Reibungskoeffizient und die Querkontraktionszahl des Elastomerlagers maßgeblich das Tragverhalten der geschraubten Stirnplattenstöße beeinflussen.
Many sectors, like finance, medicine, manufacturing, and education, use blockchain applications to profit from the unique bundle of characteristics of this technology. Blockchain technology (BT) promises benefits in trustability, collaboration, organization, identification, credibility, and transparency. In this paper, we conduct an analysis in which we show how open science can benefit from this technology and its properties. For this, we determined the requirements of an open science ecosystem and compared them with the characteristics of BT to prove that the technology suits as an infrastructure. We also review literature and promising blockchain-based projects for open science to describe the current research situation. To this end, we examine the projects in particular for their relevance and contribution to open science and categorize them afterwards according to their primary purpose. Several of them already provide functionalities that can have a positive impact on current research workflows. So, BT offers promising possibilities for its use in science, but why is it then not used on a large-scale in that area? To answer this question, we point out various shortcomings, challenges, unanswered questions, and research potentials that we found in the literature and identified during our analysis. These topics shall serve as starting points for future research to foster the BT for open science and beyond, especially in the long-term.
Synergieprognosen spielen bei der Begründung von Unternehmensübernahmen regelmäßig eine wichtige Rolle. Da diese Prognosen unsicher sind, bedürfen sie einer fundierten Beurteilung, was wiederum eine offene Diskussion innerhalb von Vorstand und Aufsichtsrat voraussetzt. Solche Diskussionen sind jedoch keine Selbstverständlichkeit, da Gruppen dazu neigen, problematische Entscheidungsaspekte nicht angemessen zu würdigen. Mit dem Tornado-Diagramm wird ein Instrument vorgestellt, das diesem Effekt entgegenwirkt und die Entscheider dazu motiviert, auch ungünstige Synergieprognosen zu diskutieren. Auf diese Weise kann die Übernahmeentscheidung auf eine bessere Informationsgrundlage gestellt werden.
Nonlinearity can give rise to intermodulation distortions in surface acoustic wave (SAW) devices operating at high input power levels. To understand such undesired effects, a finite element method (FEM) simulation model in combination with a perturbation theory is applied to find out the role of different materials and higher order nonlinear tensor data for the nonlinearities in such acoustic devices. At high power, the SAW devices containing metal, piezoelectric substrate, and temperature compensating (TC) layers are subject to complicated geometrical, material, and other nonlinearities. In this paper, third-order nonlinearities in TC-SAW devices are investigated. The materials used are LiNbO 3 -rot128YX as the substrate and copper electrodes covered with a SiO 2 film as the TC layer. An effective nonlinearity constant for a given system is determined by comparison of nonlinear P-matrix simulations to third-order intermodulation measurements of test filters in a first step. By employing these constants from different systems, i.e., different metallization ratios, in nonlinear periodic P-matrix simulations, a direct comparison to nonlinear periodic FEM-simulations yields scaling factors for the materials used. Thus, the contribution of the different materials to the nonlinear behavior of TC-SAW devices is obtained and the role of metal electrodes, substrate, and TC film are discussed in detail.
For an elastic medium containing a homogeneous distribution of micro-cracks, an effective one-dimensional stress-strain relation has been determined with finite element simulations. In addition to flat micro-cracks, voids were considered that contain a Hertzian contact, which represents an example for micro-cracks with internal structure. The orientation of both types of micro-cracks was fully aligned or, for flat micro-cracks, totally random. For micro-cracks with Hertzian contacts, the case of random orientation was treated in an approximate way. The two types of defects were found to give rise to different degrees of non-analytic behavior of the effective stress-strain relation, which governs the nonlinear propagation of symmetric (S0) Lamb waves in the long-wavelength limit. The presence of flat micro-cracks causes even harmonics to grow linearly with propagation distance with amplitudes proportional to the amplitude of the fundamental wave, and gives rise to a static strain. The presence of the second type of defects leads to a linear growth of all harmonics with amplitudes proportional to the power 3/2 of the fundamental amplitude, and to a strain-dependent velocity shift. Simple expressions are given for the growth rates of higher harmonics of S0 Lamb waves in terms of the parameters occurring in the effective stress-strain relation. They have partly been determined quantitatively with the help of the FEM results for different micro-crack concentrations.
The existence of acoustic waves with displacements localized at the tip of an isotropic elastic wedge was rigorously proven by Kamotskii, Zavorokhin and Nazarov. This proof, which is based on a variational approach, is extended to rectangular anisotropic wedges. For two high-symmetry configurations of rectangular edges in elastic media with tetragonal symmetry, a criterion is derived that allows identifying the boundary between the regions of existence for wedge modes of even and odd symmetry in regions of parameter space, where even- and odd-symmetry modes do not exist simultaneously. Furthermore, rectangular edges with non-equivalent surfaces are analyzed, and it is shown that at rectangular edges of cubic elastic media with one (110) surface and one (001) surface, a tip-localized guided wave always exists, apart from special cases that are characterized.
Laser pulses focused near the tip of an elastic wedge generate acoustic waves guided at its apex. The shapes of the acoustic wedge wave pulses depend on the energy and the profile of the exciting laser pulse and on the anisotropy of the elastic medium the wedge is made of. Expressions for the acoustic pulse shapes have been derived in terms of the modal displacement fields of wedge waves for laser excitation in the thermo-elastic regime and for excitation via a pressure pulse exerted on the surface. The physical quantity considered is the local inclination of a surface of the wedge, which is measured optically by laser-probe-beam deflection. Experimental results on pulse shapes in the thermo-elastic regime are presented and confirmed by numerical calculations. They pertain to an isotropic sharp-angle wedge with two wedge-wave branches and to a non-reciprocity phenomenon at rectangular silicon edges.
The famous violin virtuoso Nicolò Paganini (born on 27 October 1782 in Genoa, died on 27 May 1840 in Nice) left us with many puzzles. An interesting aspect is his hair: In the 19th century, hair given away as a token of friendship or romantic love became very popular, and Paganini also seems to have made use of this fad. In 2009, a lock of hair, purportedly that of Paganini, kept in a locked presentation box together with a bilingual autograph inscription saying: "Alla Signora Chatterton avec les compliments de Nicolò Paganini" was bought at an auction. From this hair lock a sample was taken and was investigated morphologically by using digital light microscopy (digital microscope VHX-100, Keyence) in reflected and transmitted light with and without polarization at different magnifications up to 1:5,000. The sample was then compared with a hair sample from the possession of the Paganini family, which had been microscopically examined in 2012 by the co-author of this paper yielding numerous figures with measurement results that had been stored and could be retrieved for direct comparison. The hair sample consisted of ten strands of hair or hair fragments and was investigated with great effort for the following parameters: exogenous hair damage, especially feeding traces caused by parasites, modeling and angulation of hairs, hair thickness, medulla and pigmentation, curling and mercury load on the trace material. After evaluation of all findings not only a non-exclusion of identity can be determined, but due to the broad match of also rare findings there is no reasonable doubt about their identity. In addition, the findings suggest that the studied hair samples are in fact from Paganini's head. The present case of Nicolò Paganini's hair lock is also an excellent starting point for reflections on the probative value of trace hair investigations. This point is also critically discussed in the paper. Finally, this study shows that said lock of hair had probably really been dedicated and given to Eliza Davenport Latham (born on 25 November 1806, died on 9 January 1877), the future wife of the, at that time, best-known and most famous English harpist John Balsir Chatterton (born on 25 November 1804, died on 9 April 1871). Paganini must have met her on his concert tour 1831/32, where he had travelled to Paris, London, the rest of England, Scotland and Ireland.
All you need is sleep
(2016)
In 21st century, the century when the humanity hopes to embark on interplanetary travel, we are yet to fully reach an understanding of our very own idiosyncratic terra incognita – the human sleep. Sleep is a highly conserved evolutionary process that constitutes approximately one third of our life, and the lack or inadequate sleep may lead to impairment across multiple cognitive domains (Tononi and Cirelli, 2014; Lim and Dinges, 2010). Sleep deprivation also leads to aberrant brain functioning, immunological and metabolic collapse, and if it is sufficiently prolonged it will ultimately lead to death (Tononi and Cirelli, 2014).
There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.
To this date, it is difficult to find high-level statistics on YouTube that paint a fair picture of the platform in its entirety. This study attempts to provide an overall characterization of YouTube, based on a random sample of channel and video data, by showing how video provision and consumption evolved over the course of the past 10 years. It demonstrates stark contrasts between video genres in terms of channels, uploads and views, and that a vast majority of on average 85% of all views goes to a small minority of 3% of all channels. The analytical results give evidence that older channels have a significantly higher probability to garner a large viewership, but also show that there has always been a small chance for young channels to become successful quickly, depending on whether they choose their genre wisely.
In recent years simple CAD systems have entered the market, which are offered as freeware or open source projects. These systems prove to be a key technology especially for the further expansion of 3D printing, because a 3D model of the object to be printed is a prerequisite for the use of a 3D printer. Therefore, this contribution reviews several common simple CAD systems. Thus technical and economic criteria are evaluated. It is also demonstrated how the models designed in this manner can be used in 3D printing. A case study shows the possibilities and limitations to be expected when using simple CAD systems.
Time-of-Flight Cameras Enabling Collaborative Robots for Improved Safety in Medical Applications
(2017)
Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.
Economic growth is usually driven by improvements in productivity, economic efficiency, trade and innovation. Increasing efficiency means to produce larger output using the same amount of factors for production such as raw materials, labour, and capital. However, regardless of the driver, growth is often investment-hungry and it is not rare to find an economy with potential for growth but lacking locally available investment. In this scenario, Foreign Direct Investment (FDI) can fill the gap between investment needed to promote economic growth and locally available investments.
Umgang mit Lebenskrisen
(2015)
Many SMEs are still faced with the problematic fact that their corporate structures and processes are not designed for efficient development and market positioning and there is a lack of appropriate methods and tools. SMEs are often inefficiently targeted to the internal or external demands for services. The following key questions are answered in this article: 1) Which studies are available in terms of strategic planning in young SMEs? 2) Which aspects should be considered in the implementation and control of these instruments?
Ansatzpunkte zur Verknüpfung von Wertmanagement und Wertemanagement aus Sicht der Führungspraxis
(2014)
Zielvereinbarungen sollen SMART formuliert werden, um die Leistungsbereitschaft von Mitarbeitern optimal zu fördern - so wird es zumindest in der praxisorientierten betriebswirtschaftlichen Literatur propagiert. Ob Zielvereinbarungen, die spezifisch, messbar, erreichbar, relevant für das Unternehmen und zeitlich terminiert sind, wirklich eine höhere Leistungsbereitschaft zur Folge haben, wird im Folgenden auf Basis einer empirischen Untersuchung überprüft.
Fans stärken Marken
(2016)
Lean und ERP - Synergie oder Widerspruch? Ein neuer Ansatz zur Steigerung der Unternehmenseffizienz
(2015)
Eine erfolgreiche Zusammenführung der Vorteile von ERP-Systemen mit den Vorzügen des Lean-Ansatzes kann zur Erschließung eines erheblichen Verbesserungspotenzials und damit zu signifikanten Wettbewerbsvorteilen einer Unternehmung führen. Da dieser Ansatz in der Praxis häufig kritisiert und bisher kaum adäquat verfolgt wird, zielt dieser Beitrag darauf ab, einen innovativen Lösungsweg vorzustellen, welcher nicht nur theoretisch, sondern auch anhand eines ERP-Einführungsprojekts in einem KMU empirisch aufzeigt, dass Lean und ERP nutzbringend miteinander kombiniert werden können und sollten.
The applicability of finite elements for molecular dynamic simulations depends on both the structure’s dimensions and the underlying force field type. Shell and continuum elements describe molecular structures only in an average sense, which is why they are not subject of this paper. In contrast, truss and beam elements are potentially attractive candidates when it comes to accurately reproducing the atomic interactions. However, special considerations are required for force fields that use not only two-body, but also multi-body potentials. For the example of bending and torsion energies it is shown how standard beam element models have to be extended to be equivalent to classical molecular dynamic simulations.