Refine
Year of publication
Document Type
- Conference Proceeding (248)
- Article (reviewed) (136)
- Article (unreviewed) (102)
- Bachelor Thesis (58)
- Part of a Book (35)
- Contribution to a Periodical (35)
- Book (27)
- Other (15)
- Master's Thesis (13)
- Patent (9)
Language
- English (399)
- German (287)
- Multiple languages (2)
- Other language (1)
- Russian (1)
- Spanish (1)
Keywords
- Kommunikation (16)
- Eingebettetes System (8)
- Energieversorgung (8)
- Intelligentes Stromnetz (8)
- Mathematik (8)
- Applikation (7)
- Brennstoffzelle (7)
- CST (7)
- HF-Ablation (7)
- Herzkrankheit (7)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (691) (remove)
Abstract: Transthoracic impedance cardiography measurements with different monitoring devices
(2016)
Transthoracic impedance cardiography (ICG) is a non-invasive method for determination of hemodynamic parameters. The basic principle of transthoracic ICG is the measurement of electrical conductivity of the thorax over the time. The aim of the study was the analysis of hemodynamic parameters from healthy individuals and the evaluation of various hemodynamic monitoring devices. Fourteen men (mean age 25 ± 4.59 years) and twelve women (mean age 24 ± 3.5 years) were measured during the cardiovascular engineering laboratory at Offenburg University of Applied Sciences, Offenburg, Germany. The ICG recordings were measured with the devices CardioScreen 1000, CardioScreen 2000 and TensoScreen with the corresponding Software Cardiovascular Lab 2.5 (Medis Medizinische Messtechnik GmbH, Illmenau, Germany). In order to create identical frame conditions, all measurements were recorded in the same position and for the same duration. Various positions were simulated from horizontal lying position to vertical standing position. Altogether, more than 30 hemodynamic parameters were measured.
In contrast to conventional aortic valve replacement, the Transcatheter Aortic Valve Implantation (TAVI) is a new highly specialist alternative to surgical valve replacement for patients with symptomatic severe aortic stenosis and high operative risk. The procedure was performed in a minimally invasive way and was introduced at the university heart centre, Freiburg – Bad Krozingen in 2008. The results have been getting better and better over the years. The aim of the investigation is the analysis of electrocardiogram conduction time and the electrocardiography changes recorded hours and days after the procedure depending on artificial heart valve models, which may lead to pacemaker implantation, even the analysis of the effectiveness of treatment.
In previous work we [1] and other authors (e.g. [2]) have shown that agent-based systems are successful in optimizing delivery plans of single logistics companies and are meanwhile successfully productive in industry. In this paper we show that agent-based systems are particularly useful to also optimize transport across logistics companies. In intercompany optimization, privacy is of major importance between the otherwise competing companies. Some data has to be treated strictly private like the cost model or the constraint model. Other data like order information has to be shared. However, typically the amount of orders released to other companies has also to be limited. We show that our agent-based approach can be easily fine tuned to trade off privacy against the benefit of cooperation.
Mit Hilfe eines Präzisionsmessplatzes soll es ermöglicht werden, automatisierte Tests mit optischen Distanzsensoren der Firma SICK durchzuführen. Hierbei handelt es sich um applikationsbezogene Vergleichsmessungen. Für die Realisierung einer erweiterbaren, automatischen Ansteuerung wird mit LabVIEW eine Software entwickelt, die unterschiedliche Distanzsensoren für Displacement Anwendungen (kurze Reichweite) einbindet. Zur Bewertung von Sensoren werden unterschiedliche Messmodi bereitgestellt. Hierbei werden motorisierte Linearachsen angesteuert, wodurch dynamische 2D-, bzw. 3D Messungen von unterschiedlichen Materialproben ermöglicht werden. Außerdem können Messergebnisse verschiedener Materialproben visuell verglichen werden. Des Weiteren besteht die Möglichkeit, aufgenommene Messdaten zu exportieren.
Mit der realisierten Ansteuerungssoftware ist es möglich, in Zukunft Mitarbeiter der global agierenden Sales & Service Units ressourcenschonend und in einem anwendungsbezogenen Kontext in die Benutzung und Bewertung von Dis-placementsensoren einzuarbeiten. Für diese Maßnahme der betrieblichen Weiterbildung ist eine Lerneinheit konzipiert. Hier geht es hauptsächlich darum, dass Mitarbeiter die Eigenschaften und Konfigurationsmöglichkeiten von Displacementsensoren verstehen und für unterschiedliche Testobjekte anwenden. Für die Lerneinheit sind Unterrichtsmaterialien erstellt sowie ein vollständiger Unterrichtsentwurf erarbeitet. Der Unterrichtsentwurf orientiert sich an dem Perspektivenschema nach Klafki (vgl. 1994, S. 270ff.).
Entwicklung und Implementierung einer Methode zur Funktions- und Verschleißprüfung von Sägeanlagen
(2019)
Die Firma KASTO Maschinenbau produziert Lagersysteme und Sägemaschinen und möchte in Zukunft mit Hilfe von prädiktiver Wartung einen Mehrwert für den Kunden, die firmeneigenen Servicetechniker und die Inbetriebnehmer generieren. Für diesen Weg in Richtung prädiktive Wartung werden in der vorliegenden Arbeit, zunächst mittels Recherche, Grundlagen definiert. Die anschließende Analyse verschiedener Bauteile und Baugruppen in der Lagertechnik und im Sägemaschinenbau führt zur Konkretisierung der Umsetzungsmöglichkeiten.
Im weiteren Verlauf der Arbeit werden die verschleißkritischen Bauteile eines KASTOwin-Bandsägeautomats behandelt. Durch die Analyse der einzelnen Verschleißformen und -erscheinungen an dessen Komponenten können Parameter zur Verschleiß-überwachung ermittelt werden. Die Überwachung dieser Prozesse soll dabei mit bestehender Sensorik durchgeführt werden und beschränkt sich deshalb hauptsächlich auf die Messeinrichtung der Frequenzumformer. Für die Komponenten Sägebandantrieb, Sägevorschubantrieb, Materialvorschubantrieb, Bandverlaufsensor, sowie das Hydrauliksystem werden entsprechende Methoden zur Funktions- und Verschleiß-prüfung ausgearbeitet.
Auf Basis dieser Methoden wird dann die Implementierung in Form eines SPS-Programms und einer dazu passenden, grafischen Benutzeroberfläche durchgeführt. Das bestehende SPS-Programm und die Benutzeroberfläche werden durch zusätzliche Programmteile ergänzt. Sämtliche Ergänzungen sind portabel und modular ausgelegt, sodass diese problemlos auch in anderen Sägemaschinen ergänzt werden können. Um kritische Verschleißsituationen nach deren Eintritt zu analysieren und daraus Schlüsse im Sinne der prädiktiven Wartung zu ziehen, ist die Sicherung aller Langzeitdaten von enormer Bedeutung. Da der remanente Speicher der SPS jedoch begrenzt ist, werden sämtliche Daten über die Visualisierung gesichert. Alle aufgenommen Daten werden sowohl grafisch als auch in Form von Werten visualisiert und können dem Kunden und Servicetechniker, sowie dem Inbetriebnehmer Aufschluss über den Zustand der Komponenten geben.
Letztlich werden die implementierten Abläufe an einer Vorführmaschine getestet. Es kann dabei die Funktion sämtlicher Prüfungen bestätigt werden
This thesis deals with the implementation of the SUBSCALE algorithm in the Python programming language. First, the current state of research and the needs of the target group are considered. Then, the choice of language is decided based on the findings. On the basis of self-generated requirements, the implementation is carried out.
Finally, the code is evaluated for accuracy, consistency, and execution time, as well as its applicability in practice.
Since the implementation of the current work proved to be unconvincing, an approach is tested in which Python is used only as a front-end.
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
Bei der Produktion von Solarzellen aus multikristallinem Silizium haben Defekte aus der Kristallisationsphase starken Einfluss auf die Materialqualität der Wafer und damit auf den Wirkungsgrad der späteren Solarzelle. Ein Verständnis des Kornwachstums in multikristallinem Silizium während des Kristallisationsprozesses kann zur Optimierung desselben beitragen. In dieser Arbeit werden Methoden untersucht, optische Flüsse zwischen Korngrenzenbildern multikristalliner Si-Wafer mittels neuronaler Netze zu berechnen. Hierfür wird die Architektur eines ausgereiften faltungsbasierten neuronalen Netzes zur optischen Fluss-Berechnung genutzt und durch angepasstes Training auf Waferstrukturen zugeschnitten. Dies umfasst die Synthese eigener, auf Waferbilder basierender Trainingsdaten und das Training mit einer angepassten Fehlerfunktion zur Bewertung der Zuordnungsgenauigkeit von Körnern zwischen Wafern durch den optischen Fluss. Beide Maßnahmen zusammen führen zu einer Reduktion des Zuordnungsfehlers von Körnern zwischen Waferbildern um 45 % gegenüber einem hochoptimierten, auf allgemeine optische Flüsse trainierten Modell basierend auf demselben Netzwerk. Die geschätzte Zuordnungsgenauigkeit des besten Modells beträgt 92,4 % der Pixel der Korngrenzenbilder eines Wafers. Weiteres Verbesserungspotenzial ist vorhanden.
In letzter Zeit sind einige neue, hochintegrierte Einchip-Radarsensoren auf den Markt gekommen. Die enormen Fortschritte im Bereich des autonomen Fahrens hat diese Sensoren hervorgebracht. Mit ihnen lassen sich diverse Anwendungen, wie zum Beispiel eine Abstandsmessung, Kollisionserkennung oder Geschwindigkeitserfassung realisieren.
Für die Nutzung eines solchen modernen Radarsensors spricht viel, jedoch besitzen alle eine differenzielle Ausgangsschnittstelle, die nicht mit den üblichen Mikrocontrollersystemen eingelesen werden kann. Darum war das Ziel der Arbeit, die Entwicklung eines Schnittstellenwandlers auf einem Low-Power-FPGA, zur Anbindung eines Radarchips an einen klassischen Mikrocontroller.
Der Lösungsweg war demnach schon vorgegeben, es folgte die konkrete Umsetzung mit der Modellierung der Hardware in VHDL. Der FPGA liest die differenzielle Schnittstelle ein, parallelisiert die Daten und speichert sie zwischen. Sobald die Messdaten vollständig sind, können sie über die serielle SPI-Schnittstelle angefordert werden. Als Gegenstelle kommt ein Mikrocontroller zum Einsatz, der die Messdaten wiederum gemäß eines definierten Protokolls zur Auswertung an einen Computer weiterleitet.
Die Machbarkeit dieser Anwendung wurde kontrolliert, indem die Messdaten vom Radarchip, übermittelt durch den FPGA und Mikrocontroller, auf dem Computer mithilfe eines Analyseprogramms bewertet wurden. Die Auswertung der Messergebnisse entspricht in vollem Umfang den Erwartungen. Der Ressourcenverbrauch im FPGA wurde hierbei ebenfalls als kritisch betrachtet, was sich im Nachhinein jedoch nicht bestätigte. Es ist sogar das Gegenteil der Fall, mit den übrigen freien Ressourcen steht einer möglichen Signalverarbeitung nichts im Wege.
Die vorliegende Bachelor-Thesis ist bei der Firma AUMA in Müllheim in der Abteilung Testingentstanden.
Diese Arbeit ist in zwei Teile unterteilt. Im ersten Teil wird näher auf den Entwurf eines Motorenprüfstands und dessen Realisierung eingegangenen, während sich der zweite Teil damit befasst, wie dieser für die Ausbildung – und die Einarbeitung in Mess- und Steuerungstechnik – von Auszubildenden genutzt werden soll. In diesem Versuchsaufbau wird vorrangig ein Gleichstrommotor getestet.
Die Begründung für die Erstellung eines Motoren-Bremsprüfstands liegt darin, dass es eine der Hauptaufgaben der Abteilung Testing ist, in Labor-Prüfeinrichtungen Antriebe der AUMA Gruppe zu testen. Diese Prüfeinrichtungen arbeiten in der Regel mit gefährlichen Spannungen und dürfen nur von Fachkräften in Betrieb genommen werden. In Zukunft sollen Auszubildende im Zuge einer praxisnahen und handlungsorientierten Ausbildung die Möglichkeit haben, sich selbstständig in die Bereiche der Mess- und Steuerungstechnik einzuarbeiten.
Mit dem realisierten Motoren-Bremsprüfstand ist es in der Abteilung Testing möglich, in Zukunft Auszubildende ressourcenschonend und in einem gefahrenfreien Umfeld in die Aufgaben der Abteilung Testing einzuarbeiten. Somit reduziert sich die benötigte Einarbeitungszeit, in der ein Mitarbeiter die Auszubildenden betreuen muss. Mit dem gebauten Prüfstand können Auszubildende die Charakteristik eines Gleichstrommotors verstehen und die Messmethoden, zur Erfassung von Drehmoment, Drehwinkel, Temperatur, sowie elektrische Größen, anwenden. Diese Erkenntnisse lassen sich optimal auf größere Prüfstände übertragen und bereiten die Auszubildenden auf spätere Aufgaben im Unternehmen AUMA und der Abteilung Testing vor.
Since direct current high energy shock fulguration was initially performed in the mid 1980s, ablation of cardiac arrhythmias has come to widespread use. Today the most frequently used energy source for catheter ablation is radio frequency (RF). It was the German engineer Peter Osypka who made available the HAT 100 as the first simple commercial RF ablator.
Nevertheless, in the first years of ablation, physicians were effectively working in the dark. Until today with an increasing understanding of arrhythmia mechanisms, both at the atrial and ventricular levels, this curative technology has made tremendous progress. Now, due to crucial improvement of RF ablation generators, temperature and contact force sensor catheters in combination with non-flouroscopic electroanatomical mapping technologies, computerized temperature and impedance controlled radiofrequency catheter ablation can be used to cure all types of arrhythmias including atrial and ventricular fibrillation. For the latter, cooled ablation by saline solution irrigated catheters has been developed to a widely used standard method. This procedure resulting in pulmonary vein isolation requires transseptal puncture and is technically demanding. Nevertheless, it has shown to be more effective than antiarrhythmic drug therapy.
While earliest RF ablations were performed with non-steerable catheters, today are used steerable sensor catheters without or with external and internal cooling and tips of 4mm or 8mm length. Further innovations like integration of mapping and cardiac imaging give exact information of the number of pulmonary veins and branching patterns and help to correlate electrical signals with anatomical structures.
The magnetic navigation significantly improved the success rates and safety of catheter ablation. Thus, in most cases RF catheter ablation has developed in the treatment of supraventricular arrhythmias from an alternative approach to drug therapy into the first therapeutic choice providing low complication rates.
In future, robotic navigation will further simplify procedures and reduce radiation exposure of this curative approach.
Introduction: Despite lots of developments in the last years, radiofrequency ablation of rhythm diseases is a safe but still complex procedure that requires special experience and expertise of the physicians and biomedical engineers. Thus, there is a need of special trainings to become familiar with the different equipment and to explain several effects that can be observed during clinical routine.
Methods: The Offenburg University of Applied Sciences offers a biomedical engineering study path specialized in the fields of cardiology, electrophysiology and cardiac electronic implants. It`s Peter Osypka Institute for Pacing and Ablation provides teaching following the slogan “Learning by watching, touching and adjusting”. It conducts lots of trainings for students as well as young physicians interested in electrophysiology and radiofrequency ablation.
Results: In-vitro trainings will be provided using the Osypka HAT 200 and HAT300s, Stockert EPshuttle and SmartAblate system as well as the Boston EPT-1000XP and Maestro 3000 and the Radionics RFG-3E cardiac radio frequency ablation generators. All of them require different handling as well as special accessories like catheter connection cables or boxes and back plates. The participants will be trained in the setup of temperature, power and cut-off impedance dependent on different ablation catheters. Furthermore troubleshooting in hard- and software is part of the program. Performing procedures in pork or animal protein and using physiological saline solution to simulate the blood flow, they can study the influence of contact force and impedance on lesion geometry etc. and to avoid adverse effects like “plops”. Lots of catheter types are available: 4mm tip, 8mm standard and gold tip, open and closed irrigated tip ablation catheters of different companies. The experiments will be completed by measuring the lesion size dependent on the used catheter type and ablation settings.
Conclusion: In-vitro training in radiofrequency ablation is a challenge for biomedical engineering students and young physicians.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
In-vivo and in-vitro comparison of implant-based CRT optimization - What provide new algorithms?
(2011)
Introduction: In cardiac resynchronization therapy (CRT), individual AV delay (AVD) optimization can effectively increase hemodynamics and reduce non-responder rate. Accurate, automatic and easily comprehensible algorithms for the follow-up are desirable. QuickOpt is the first attempt of a semi-automatic intracardiac electrogram (IEGM) based AVD algorithm. We aimed to compare its accuracy and usefulness by in-vitro and in-vivo studies.
Methods: Using the programmable ARSI-4 four-chamber heart rhythm and IEGM simulator (HKP, Germany), the QuickOpt feature of an Epic HF system (St. Jude, USA) was tested in-vitro by simulated atrial IEGM amplitudes between 0.3 and 3.5mV during both, manual and automatic atrial sensing between 0.2 and 1.0mV. Subsequently, in 21 heart failure patients with implanted biventricular defibrillators, QuickOpt was performed in-vivo. Results of the algorithm for VDD and DDD stimulation were compared with echo AV delay optimization.
Results: In-vitro simulations demonstrated a QuickOpt measuring accuracy of ± 8ms. Depending on atrial IEGM amplitude, the algorithm proposed optimal AVD between 90 and 150ms for VDD and between 140 and 200ms for DDD operation, respectively. In-vivo, QuickOpt difference between individual AVD in DDD and VDD mode was either 50ms (20pts) or 40ms (1pt). QuickOpt and echo AVD differed by 41 ± 25ms (7 – 90ms) in VDD and by 18 ± 24ms (17-50ms) in DDD operation. Individual echo AVD difference between both modes was 73 ± 20ms (30-100ms).
Conclusion: The study demonstrates the value of in-vitro studies. It predicted QuickOpt deficiencies regarding IEGM amplitude dependent AVD proposals constrained to fixed individual differences between DDD and VDD mode. Consequently, in-vivo, the algorithm provided AVD of predominantly longer duration than echo in both modes. Accepting echo individualization as gold standard, QuickOpt should not be used alone to optimize AVD in CRT patients.
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Geschichte(n) der Medizin
(2016)
Nach dem großen Erfolg der beiden ersten Bände liegt jetzt der Abschluss der Trilogie vor. Renommierte Autorinnen und Autoren erzählen einmal mehr lebendige und mitreißende Geschichte(n) der Medizin über Krankheiten, Ärzte und Forscher. Wie kam es beispielsweise zur Entdeckung der "Perkussion"? Wer war Avicenna? Warum wurde der Name Goldberg so berühmt? Was haben Rembrandt und Schiller gemeinsam? Welchen Einfluss nahm deutsche Medizin auf den Fernen Osten? Die populärwissenschaftlich aufbereitete Welt der Medizingeschichte(n) fasziniert nicht nur, sie sorgt auch immer wieder für überraschende Erkenntnisse und Aha-Erlebnisse. Das Buch richtet sich daher gleichermaßen an medizinische Laien wie Fachleute.
A new yield function for lamellar gray cast iron materials is proposed. The new model is able to describe the results of recently performed microstructure-based finite-element computations that resolve the three dimensional yield surface of three different gray cast irons. The yield function requires only the yield stress in tension and compression of the respective material as model parameters. Furthermore, the algorithmic formulation of the new model is assessed for numerical robustness and efficiency.
Das Projekt PHOTOPUR soll die Reduzierung von Pestiziden in Oberflächengewässern ermöglichen. In dieser Arbeit wird eine Automatisierung eines ersten Demosystems entwickelt, welches den gesamten Reinigungsprozess abbildet. Eine Projektierung der Automatisierung des Systems wird mit den dafür vorgesehenen Fließschemas und Gerätelisten durchgeführt. Darauf aufbauend wird die Ablaufsteuerung des Demosystems durch einen Ablauf-Funktionsplan umgesetzt. Um eine Systemüberwachung der Anlage zu gewährleisten wurde dazu eine Visualisierung ausgearbeitet. Zusätzlich wurden die Regelstrecken der Durchflussregelungen in den zwei Teilprozessen des Reinigungsprozesses bestimmt und durch unterschiedliche Einstellregeln der optimale Regler der Regelkreise ermittelt.
Die in dieser Arbeit entwickelte Software, beinhaltet die drei folgenden Umsetzungen: Realisierung der Ablaufsteuerung, Implementierung der Reglerparameter durch einen vorhandenen Regelalgorithmus und die Visualisierung des Demosystems.
Wir haben die erste „Eiserne Hand“ des Götz von Berlichingen mit 3D-Computer-Aided Design rekonstruiert und über einen Multimaterial-3D-Drucker ausgedruckt. Dabei ließ sich feststellen, dass die 500 Jahre alte Technik keinesfalls veraltet ist: Das Innenleben der „Eisernen Hand“ ist ausgefeilter als bisher angenommen. Sie könnte sogar spannende Impulse für die Entwicklung neuer künstlicher Handprothesen liefern.
Message co chairmen
(2017)
In this study, a high-performance controller is proposed for single-phase grid-tied energy storage systems (ESSs). To control power factor and current harmonics and manage time-shifting of energy, the ESS is required to have low steady-state error and fast transient response. It is well known that fast controllers often lack the required steady-state accuracy and trade-off is inevitable. A hybrid control system is therefore presented that combines a simple yet fast proportional derivative controller with a repetitive controller which is a type of learning controller with small steady-state error, suitable for applications with periodic grid current harmonic waveforms. This results in an improved system with distortion-free, high power factor grid current. The proposed controller model is developed and design parameters are presented. The stability analysis for the proposed system is provided and the theoretical analysis is verified through stability, transient and steady-state simulations.
Exploiting Dissent: Towards Fuzzing-based Differential Black Box Testing of TLS Implementations
(2017)
The Transport Layer Security (TLS) protocol is one of the most widely used security protocols on the internet. Yet do implementations of TLS keep on suffering from bugs and security vulnerabilities. In large part is this due to the protocol's complexity which makes implementing and testing TLS notoriously difficult. In this paper, we present our work on using differential testing as effective means to detect issues in black-box implementations of the TLS handshake protocol. We introduce a novel fuzzing algorithm for generating large and diverse corpuses of mostly-valid TLS handshake messages. Stimulating TLS servers when expecting a ClientHello message, we find messages generated with our algorithm to induce more response discrepancies and to achieve a higher code coverage than those generated with American Fuzzy Lop, TLS-Attacker, or NEZHA. In particular, we apply our approach to OpenssL, BoringSSL, WolfSSL, mbedTLS, and MatrixSSL, and find several real implementation bugs; among them a serious vulnerability in MatrixSSL 3.8.4. Besides do our findings point to imprecision in the TLS specification. We see our approach as present in this paper as the first step towards fully interactive differential testing of black-box TLS protocol implementations. Our software tools are publicly available as open source projects.
Energy and environment continue to be major issues of human mankind. This holds true on the regional, the national, and the global level. And it is one of the problems, where engineers and scientists in conjunction with political will and people's awareness, can find new approaches and solutions to save the natural resources and to make their use more efficient.
The automatic classification of the modulation format of a detected signal is the intermediate step between signal detection and demodulation. If neither the transmitted data nor other signal parameters such as the frequency offset, phase offset and timing information are known, then automatic modulation classification (AMC) is a challenging task in radio monitoring systems. The approach of clustering algorithms is a new trend in AMC for digital modulations. A novel algorithm called `highest constellation pattern matching' is introduced to identify quadrature amplitude modulation and phase shift keying signals. The obtained simulation and measurement results outperform the existing algorithms for AMC based on clustering. Finally, it is shown that the proposed algorithm works in a real monitoring environment.
The instability of ultra-thin films of an electrolyte bordering a dielectric gas in an external tangential electric field is scrutinized. The solid wall is assumed to be either a conducting or charged dielectric surface. The problem has a steady one-dimensional solution. The theoretical results for a plug-like velocity profile are successfully compared with available experimental data. The linear stability of the steady-state flow is investigated analytically and numerically. Asymptotic long-wave expansion has a triple-zero singularity for a dielectric wall and a quadruple-zero singularity for a conducting wall, and four (for a conducting wall) or three (for a charged dielectric wall) different eigenfunctions. For infinitely small wave numbers, these eigenfunctions have a clear physical meaning: perturbations of the film thickness, of the surface charge, of the bulk conductivity, and of the bulk charge. The numerical analysis provides an important result: the appearance of a strong short-wave instability. At increasing Debye numbers, the short-wave instability region becomes isolated and eventually disappears. For infinitely large Weber numbers, the long-wave instability disappears, while the short-wave instability persists. The linear stability analysis is complemented by a nonlinear direct numerical simulation. The perturbations evolve into coherent structures; for a relatively small external electric field, these are large-amplitude surface solitary pulses, while for a sufficiently strong electric field, these are short-wave inner coherent structures, which do not disturb the surface.
A wide range catalyst screening with noble metal and oxide catalysts for a metal–air battery with an aqueous alkaline electrolyte was carried out. Suitable catalysts reduce overpotentials during the charge and discharge process, and therefore improve the round-trip efficiency of the battery. In this case, the electrodes will be used as optimized cathodes for a future lithium–air battery with an aqueous alkaline electrolyte. Oxide catalysts were synthesized via atmospheric plasma spraying. The screening showed that IrO2, RuO2, La0.6Ca0.4Co3, Mn3O4, and Co3O4 are promising bi-functional catalysts. Considering the high price for the noble metal catalysts further investigations of the oxide catalysts were carried out to analyze their electrochemical behavior at varied temperatures, molarities, and in case of La1−x Ca x CoO3 a varying calcium content. Additionally all catalysts were tested in a longterm test to proof cyclability at varied molarities. Further investigations showed that Co3O4 seems to be the most promising bi-functional catalyst of the tested oxide catalysts. Furthermore, it was shown that a calcium content of x = 0.4 in LCCO has the best performance.
Private households constitute a considerable share of Europe's electricity consumption. The current electricity distribution system treats them as effectively passive individual units. In the future, however, users of the electricity grid will be involved more actively in the grid operation and can become part of intelligent networked collaborations. They can then contribute the demand and supply flexibility that they dispose of and, as a result, help to better integrate renewable energy in-feed into the distribution grids.
High-precision signal processing algorithm to evaluate SAW properties as a function of temperature
(2013)
This paper presents a signal processing algorithm which accurately evaluates the SAW properties of a substrate as functions of temperature. The investigated acoustic properties are group velocity, phase velocity, propagation loss, and coupling coefficient. With several measurements carried out at different temperatures, we obtain the temperature dependency of the SAW properties. The analysis algorithm starts by reading the transfer functions of short and long delay lines. The analysis algorithm determines the center frequency of the delay lines and obtains the delay time difference between the short and long delay lines. The extracted parameters are then used to calculate the acoustic properties of the SAW material. To validate the algorithm, its accuracy is studied by determining the error in the calculating delay time difference, center frequency, and group velocity.
Researchers are developing new GNSS receivers and antennas based on an innovative signal-processing scheme to significantly improve GNSS tracking reliability and accuracy under degraded signal conditions. It is based on the principles of synthetic-aperture radar. Like in a multi-antenna phased array receiver, GNSS signals from different spatial locations are combined coherently forming an optimized synthetic antenna-gain pattern. The method is implemented in a real-time PC-based software receiver and works with GPS, GLONASS, and Galileo signals. Multiple frequencies are generally supported. The idea of synthetic-aperture processing is realized as a coherent summation of correlation values of each satellite over the so-called beamforming interval. Each correlation value is multiplied with a phase factor. For example, the phase factor can be chosen to compensate for the relative antenna motion over the beam-forming interval and the resulting sum of the scaled correlation values represents a coherent correlation value maximizing the line of sight signal power.
The paper proposes a system architecture for charging infrastructure that serves the requirements of future fleets of shared-use electric vehicles in urban scenarios. The focus of the development is on the interfaces to central stakeholders such as mobility service providers, distribution network operators and utilities. The main concept of the proposed system is the adherence to a stringent resource-oriented design approach, following the design principles of the Representational State Transfer (REST) architectural software style for distributed systems. This design approach is used from the cloud-based services down to the implementation of the charging infrastructure's control algorithms. Focusing on the resources of the various entities simplifies the implementation of their interactions, compared to the explicit declaration of services that are available. The system design ensures that the charging infrastructure is open to all users and generates a benefit beyond basic charging operations. Integration in emerging smart markets is done via open web-based interfaces. These allow for the generation of an added value of concrete services for shared-use electric mobility. A link to the field of grid operation is proposed using the ISO/IEC 61850 telecontrol standard. The smart meter capabilities of the charging stations can be used to gain additional information on the current state of the distribution grid. As an exemplary service a load management service for a fleet of shared-use electric vehicles is going to be implemented.
Background: Increasing awareness of the importance of evidence-based medicine is demonstrated not only by an increasing number of articles addressing it but also by a specialty-wide evidence-based medicine initiative. The authors critically analyzed the quality of reporting of randomized controlled trials published in this Journal over a 21-year period (1990 to 2010).
Methods: A hand search was conducted, including all issues of Plastic and Reconstructive Surgery from January of 1990 to December of 2010. All randomized controlled trials published during this time period were identified with the Cochrane decision tree for identification of randomized controlled trials. To assess the quality of reporting, a modification of the checklist of the Consolidated Standard of Reporting Trials Statement was used.
Results: Of 7121 original articles published from 1990 to 2010 in the Journal, 159 (2.23 percent) met the Cochrane criteria. A significant increase in the absolute number of randomized controlled trials was seen over the study period (p < 0.0001). The median quality of these trials from 1990 to 2010 was "fair," with a trend toward improved quality of reporting over time (p = 0.127).
Conclusions: A favorable trend is seen with respect to an increased number of published randomized controlled trials in Plastic and Reconstructive Surgery. Adherence to standard reporting guidelines is recommended, however, to further improve the quality of reporting. Consideration may be given to providing information regarding the quality of reporting in addition to the "level of evidence pyramid," thus facilitating critical appraisal.
There is an increasing demand by an ever-growing number of mobile customers for transfer of rich media content. This requires very high bandwidth which either cannot be provided by the current cellular systems or puts pressure on the wireless networks, affecting customer service quality. This study introduces COARSE – a novel cluster-based quality-oriented adaptive radio resource allocation scheme, which dynamically and adaptively manages the radio resources in a cluster-based two-hop multi-cellular network, having a frequency reuse of one. COARSE is a cross-layer approach across physical layer, link layer and the application layer. COARSE gathers data delivery-related information from both physical and link layers and uses it to adjust bandwidth resources among the video streaming end-users. Extensive analysis and simulations show that COARSE enables a controlled trade-off between the physical layer data rate per user and the number of users communicating using a given resource. Significantly, COARSE provides 25–75% improvement in the computed user-perceived video quality compared with that obtained from an equivalent single-hop network.
Multi-phase management is crucial for performance and durability of electrochemical cells such as batteries and fuel cells. In this paper we present a generic framework for describing the two-dimensional spatiotemporal evolution of gaseous, liquid and solid phases, as well as their interdependence with interfacial (electro-)chemistry and microstructure in a continuum description. The modeling domain consists of up to seven layers (current collectors, channels, electrodes, separator/membrane), each of which can consist of an arbitrary number of bulk phases (gas, liquid, solid) and connecting interfaces (two-phase or multi-phase boundaries). Bulk and interfacial chemistry is described using global or elementary kinetic reactions. Multi-phase management is coupled to chemistry and to mass and charge transport within bulk phases. The functionality and flexibility of this framework is demonstrated using four application areas in the context of post-lithium-ion batteries and fuel cells, that is, lithium-sulfur (Li-S) cells, lithium-oxygen (Li-O) cells, solid oxide fuel cells (SOFC) and polymer electrolyte membrane fuel cells (PEFC). The results are compared to models available in literature and properties of the generic framework are discussed.
The study from Mehrazin et al. in HJNM 2011; 14(3): 243-50 on the neuropsychology, morphological computerized tomography (CT) and functional neuroimaging with 99mTc-labelled ethylene cystein-ate dimer single-photon emission tomography (SPET) in mild trau-matic brain injury (MTBI) is an interesting new approach to a disease condition which is often neglected or denied. Related to the above, we may note that the French composer Maurice Ravel (1875-1937), who suffered from Pick ́s disease with primary progressive apha-sia, had a taxi accident in 1932, with a mild concussion, perhaps an MTBI. Apart from the dysphasia and beginning apraxia, which Rav-el had already 5 years prior to the taxi accident, these symptoms exacerbated-the dysphasia became a progressive aphasia-and he developed additional severe deficits in concentration and atten-tion after the accident. It has also been suspected that this accident may have triggered Ravel ́s agraphia the unability to write down any new composition beyond the date of the taxi accident, a condi-tion that Ravel himself described as unacceptable and which made him feel very sad as his mind was full of ideas. Due to the deterio-ration of his health, which can also be seen in his appearance on late photographs, Ravel consulted the famous neurosurgeon Prof. Clovis Vincent. Vincent, who suspected a hydrocephalus, opened Ravel ́s skull on December 19, 1937, showing a normal brain. Soon after surgery Ravel died. In conclusion, a SPET/CT approach com-bined with a brain perfusion analysis using statistical parametric mapping might be the recommendable approach today for mild traumatic brain injury.
The suffix-free-prefix-free hash function construction and its indifferentiability security analysis
(2012)
In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value (IV) of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) strengthening in the padding functionality of the hash functions. We propose a generic n-bit-iterated hash function framework based on an n-bit compression function called suffix-free-prefix-free (SFPF) that works for arbitrary IVs and does not possess MD strengthening. We formally prove that SFPF is indifferentiable from a random oracle (RO) when the compression function is viewed as a fixed input-length random oracle (FIL-RO). We show that some hash function constructions proposed in the literature fit in the SFPF framework while others that do not fit in this framework are not indifferentiable from a RO. We also show that the SFPF hash function framework with the provision of MD strengthening generalizes any n-bit-iterated hash function based on an n-bit compression function and with an n-bit chaining value that is proven indifferentiable from a RO.
A survey in 2000 revealed that only about 30% of the prescriptions in the European pediatric population were on the basis of evidence-based medicine (EbM). Less for radiopharmaceuticals and principally for diagnostics, radiologists throughout Europe are referred to the pediatric guidelines of the European Association of Nuclear Medicine (EANM), as none of the frequently used tracers have been evaluated in clinical trials in the different pediatric subgroups. Following a resolution to address the lack of EbM in children, the European Commission published the Pediatric Regulation EC 1901/2006 and its amendment EC 1902/2006, effective from 2007. This regulation foresees the development of evidence-based medicine in the pediatric population. This is effected through a set of principles like the mandatory pediatric investigation plan (PIP) to be included with the market authorization application (MAA), and the pediatric use market authorization (PUMA) for off-patent pharmaceuticals, and to a very small part radiopharmaceuticals with funding possibilities for pediatric-specific research through the 7th Framework Programme (7FP) of the European Union.
Routine nuclear cardiology examinations indicate heart rate, cardiac rhythm, the height of cardiac pulse and respiration rhythm. It would be of interest to study whether these data, especially if the same tests are repeated, can indicate patients’ well being in the future and perhaps patients’ life span, other factors being equal. Related old theories and suggestions are mentioned. Furthermore, some drugs like I-f channel antagonists and stress tests testing cardiac reserves could support such a study.
The Humboldt digital library (HDL) represents an innovative system to access the works and legacy of Alexander von Humboldt in a digital form on the Internet (www.avhumboldt.net). It contributes to the key question about how to present interconnected data in an appropriate form using information technologies. The HDL has been created as a dynamic digital library with the capability of connecting multilingual and multimedia data from diverse online archives. Humboldt’s volumes have become available, but beyond that any relevant information related to the observations of Humboldt, even outside the works can become immediately accessible. This makes it possible to recognize natural changes and compare Humboldt’s descriptions with recent situations. The technology we have developed addresses the issues of sustainability and makes it possible to detect changes in the environment since the time of Humboldt’s observations.
The separation of nitrogen and methane from hydrogen-rich mixtures is systematically investigated on a recently developed binder-free zeolite 5A. For this adsorbent, the present work provides a series of experimental data on adsorption isotherms and breakthrough curves of nitrogen and methane, as well as their mixtures in hydrogen. Isotherms were measured at temperatures of 283–313 K and pressures of up to 1.0 MPa. Breakthrough curves of CH4, N2, and CH4/N2 in H2 were obtained at temperatures of 300–305 K and pressures ranging from 0.1 to 6.05 MPa with different feed concentrations. An LDF-based model was developed to predict breakthrough curves using measured and calculated data as inputs. The number of parameters and the use of correlations were restricted to focus on the importance of measured values. For the given assumptions, the results show that the model predictions agree satisfactorily with the experiments under the different operating conditions applied.
Das Ingenieurbüro Evomotiv GmbH und die University of Applied Sciences Offenburg entwickeln seit Ende 2008 ein Antriebskonzept für leichte Stadtfahrzeuge. Ziel des Elektroantriebs ist die Serientauglichkeit der hochintegrierten, getriebelosen und eisenfreien Radnabenmotoren. Das Bundesministerium für Wirtschaft und Technologie (BMWi) unterstützt das Projekt. Das Konzept des Radnabenmotors erhielt 2006 den Bosch—Innovationspreis und gewann 2008 den Shell-Eco-Marathon. Im Jahr 2011 wird Evomotiv mit seinen Partnern erste Prototypen auf der Straße testen.
We present a novel fabrication route yielding Raney-platinum film electrodes intended as glucose oxidation anodes for potentially implantable fuel cells. Fabrication roots on thermal alloying of an extractable metal with bulk platinum at 200 °C for 48 h. In contrast to earlier works using carcinogenic nickel, we employ zinc as potentially biocompatible alloying partner. Microstructure analysis indicates that after removal of extractable zinc the porous Raney-platinum film (roughness factor ∼2700) consists predominantly of the Pt3Zn phase. Release of zinc during electrode operation can be expected to have no significant effect on physiological normal levels in blood and serum, which promises good biocompatibility. In contrast to previous anodes based on hydrogel-bound catalyst particles the novel anodes exhibit excellent resistance against hydrolytic and oxidative attack. Furthermore, they exhibit significantly lower polarization with up to approximately 100 mV more negative electrode potentials in the current density range relevant for fuel cell operation. The anodes’ amenability to surface modification with protective polymers is demonstrated by the exemplary application of an approximately 300 nm thin Nafion coating. This had only a marginal effect on the anode long-term stability and amino acid tolerance. While in physiological glucose solution after approximately 100 h of operation gradually increasing performance degradation occurs, rapid electrode polarization within 24 h is observed in artificial tissue fluid. Optimization approaches may include catalyst enhancement by adatom surface modification and the application of specifically designed protective polymers with controlled charge and mesh size.
We report the fabrication and characterization of glucose-tolerant Raney-platinum cathodes for oxygen reduction in potentially implantable glucose fuel. Fabricated by extraction of aluminum from 1 μm thin platinum–aluminum bi-layers annealed at 300 °C, the novel cathodes show excellent resistance against hydrolytic and oxidative attack. This renders them superior over previous cathodes fabricated from hydrogel-bound catalyst particles. Annealing times of 60, 120, and 240 min result in approximately 400–550 nm thin porous films (roughness factors ∼100–150), which contain platinum and aluminum in a ratio of ∼9:1. Aluminum release during electrode operation can be expected to have no significant effect on physiological normal levels, which promises good biocompatibility. Annealing time has a distinct influence on the density of trenches formed in the cathode. Higher trench densities lead to lower electrode potentials in the presence of glucose. This suggests that glucose sensitivity is governed by mixed potential formation resulting from oxygen depletion within the trenches. During performance characterization the diffusion resistance to be expected from tissue capsule formation upon electrode implantation was taken into account by placing a membrane in front of the cathode. Despite the resulting limited oxygen supply, cathodes prepared by annealing for 60 min show more positive electrode potentials than previous cathodes fabricated from hydrogel-bound activated carbon. Compared to operation in phosphate buffered saline containing 3.0 mM glucose, a potential loss of approximately 120 mV occurs in artificial tissue fluid. This can be reduced to approximately 90 mV with a protective Nafion layer that is easily electro-coated onto the Raney-platinum film.
There are some existing Java benchmarks, application benchmarks as well as micro benchmarks or mixture both of them,such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none of them deal with behaviors of multi tasks operating systems. As a result, the achieved outputs are not satisfied for performance evaluation engineers. Behaviors of multi tasks operating systems are based on a schedule management which is employed in these systems. Different processes can have different priority to share the same resources. The time is measured by estimating from applications started to it is finished does not reflect the real time value which the system need for running those programs. New approach to this problem should be done. Having said that, in this paper we present a new Java benchmark, named FHOJ benchmark, which directly deals with multi tasks behaviors of a system. Our study shows that in some cases, results from FHOJ benchmark are far more reliable in comparison with some existing Java benchmarks.