Refine
Year of publication
Document Type
- Article (reviewed) (165)
- Conference Proceeding (142)
- Article (unreviewed) (70)
- Part of a Book (51)
- Book (21)
- Contribution to a Periodical (17)
- Patent (16)
- Report (8)
- Other (6)
- Doctoral Thesis (2)
- Periodical Part (2)
- Image (1)
- Study Thesis (1)
Has Fulltext
- no (502) (remove)
Is part of the Bibliography
- yes (502) (remove)
Keywords
- Dünnschichtchromatographie (23)
- Energieversorgung (12)
- Adsorption (11)
- Ermüdung (9)
- Metallorganisches Netzwerk (9)
- Finite-Elemente-Methode (8)
- Plastizität (8)
- Bauteil (7)
- Haustechnik (7)
- Mikrostruktur (7)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (502) (remove)
This book constitutes the refereed proceedings of the 20th International TRIZ Future Conference, TFC 2020, held online at the University Cluj-Napoca, Romania, in October 2020 and sponsored by the International Federation for Information Processing.
34 chapters were carefully peer reviewed and selected from 91 conference submissions. They are organized in the following thematic sections: computing TRIZ; education and pedagogy; sustainable development; tools and techniques of TRIZ for enhancing design; TRIZ and system engineering; TRIZ and complexity; and cross-fertilization of TRIZ for innovation management.
Erfinderisches Problemlösen mit TRIZ : Zielbeschreibung, Problemdefinition und Lösungspriorisierung
(2017)
Die Theorie des erfinderischen Problemlösens, TRIZ, ist eine Systematik von Annahmen, Regeln, Methoden und Werkzeugen zur innovativen Systemverbesserung z.B. von Produkten, Prozessen, Dienstleistungen oder Organisationen. Diese Richtlinie erläutert TRIZ-Werkzeuge und -Methoden, die insbesondere in den Phasen "Zielbeschreibung", "Problemdefinition" und "Lösungspriorisierung" des Problemlösungsprozesses eingesetzt werden. Die Detailtiefe der Beschreibung erlaubt eine Einschätzung der Werkzeuge und Methoden hinsichtlich Einsatzzwecken, Ergebnissen und Funktionsweise. Die jeweilige Beschreibung der Methoden und Werkzeuge enthält konkrete Aussagen über Zielsetzung und Ergebnis ihres Einsatzes.
A systematic toxicological analysis procedure using high-performance thin layer chromatography in combination with fibre optical scanning densitometry for identification of drugs in biological samples is presented. Two examples illustrate the practicability of the technique. First, the identification of a multiple intake of analgesics: codeine, propyphenazone, tramadol, flupirtine and lidocaine, and second, the detection of the sedative diphenhydramine. In both cases, authentic urine specimens were used. The identifications were carried out by an automatic measurement and computer-based comparison of in situ UV spectra with data from a compiled library of reference spectra using the cross-correlation function. The technique allowed a parallel recording of chromatograms and in situ UV spectra in the range of 197–612 nm. Unlike the conventional densitometry, a dependency of UV spectra by concentration of substance in a range of 250–1000 ng/spot was not observed.
Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.
Energy Performance of Verandas in the Building Retrofit Process (PDF Download Available). Available from: https://www.researchgate.net/publication/303093420_Energy_Performance_of_Verandas_in_the_Building_Retrofit_Process [accessed Jul 5, 2017].
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays
(2013)
A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A Butler–Volmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of electrochemical oxygen reduction. Validated by using published V–I experiments, the model is then used to analyze the effects of operating conditions on current output and water management, especially net water transport coefficient along the channel. For a power PEMFC, the long-channel configuration is helpful for internal humidification and anode water removal, operating in counterflow mode with proper gas flow rate and humidity. In time domain, a typical transient process with closed anode is also investigated.
The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called ‘configuration of system dynamics’, which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.
This work provides a series of methane adsorption isotherms and breakthrough curves on one 5A zeolite and one activated carbon. Breakthrough curves of CH4 were obtained from dynamic column measurements at different temperature and pressure conditions for concentrations of 4.4 – 17.3 mol.‐% in H2/CH4 mixtures. A simple model was developed to simulate the curves using measured and calculated data inputs. The results show that the model predictions agree very well with the experiments.
Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
Accelerated transformation of the society and industry through digi-talization, artificial intelligence and other emerging technologies has intensified the need for university graduates that are capable of rapidly finding breakthrough solutions to complex problems, and can successfully implement innovation con-cepts. However, there are only few universities making significant efforts to com-prehensively incorporate creative and systematic tools of TRIZ (theory of in-ventive problem solving) and KBI (knowledge-based innovation) into their de-gree structure. Engineering curricula offer little room for enhancing creativity and inventiveness by means of discipline‐specific subjects. Moreover, many ed-ucators mistakenly believe that students are either inherently creative, or will in-evitably obtain adequate problem-solving skills as a result of their university study. This paper discusses challenges of intelligent integration of TRIZ and KBI into university curricula. It advocates the need for development of standard guidelines and best-practice recommendations in order to facilitate sustainable education of ambitious, talented, and inventive specialists. Reflections of educa-tors that teach TRIZ and KBI to students from mechanical, electrical, process engineering, and business administration are presented.
The design of control systems in large-scale CPV power plants will be more challenging in the future. Reasons are the increasing size of power plants, the requirements of grid operators, new functions, and new technological trends in industrial automation or communication technology. Concepts and products from fixed-mounted PV can only partly be adopted since control systems for sun-tracking installations are considerable more complex due to the higher quantity of controllable entities. The objective of this paper is to deliver design considerations for next generation control systems. Therefore, the work identifies new applications of future control systems categorized into operation, monitoring and maintenance domains. The key-requirements of the technical system and the application layer are identified. In the resulting section, new strategies such as a more decentralized architecture are proposed and design criteria are derived. The contribution of this paper should allow manufacturers and research institutes to consider the design criteria in current development and to place further research on new functions and control strategies precisely.
The formation and analysis of ten microporous triazolyl isophthalate based MOFs, including nine isomorphous and one isostructural compound is presented. The compounds 1 M – 3 M with the general formula [ M ( R 1 - R 2 - trz - ia ) ] ∞ 3 ·x H 2 O (M 2+ = Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ ; R 1 = H, Me; R 2 = 2py, 2pym, prz (2py = 2-pyridinyle; 2pym = 2-pyrimidinyle; prz = pyrazinyle)) crystallize with rtl topology. They are available as single crystals and also easily accessible in a multi-gram scale via refluxing the metal salts and the protonated ligands in a solvent. Their isomorphous structures facilitate the synthesis of heteronuclear MOFs; in case of 2 M , Co 2+ ions could be gradually substituted by Cu 2+ ions. The Co 2+ :Cu 2+ ratios were determined by ICP-OES spectroscopy, the distribution of Co 2+ and Cu 2+ in the crystalline samples are investigated by SEM-EDX analysis leading to the conclusions that Cu 2+ is more favorably incorporated into the framework compared to Co 2+ and, moreover, that the distribution of the two metal ions between the crystals and within the crystals is inhomogeneous if the crystals were grown slowly. The various compositions of the heteronuclear materials lead to different colors and the sorption properties for CO 2 and N 2 are dependent on the integrated metal ions.
Fast charging of lithium-ion batteries remains one of the most delicate challenges for the automotive industry, being seriously affected by the formation of lithium metal in the negative electrode. Here we present a physicochemical pseudo-3D model that explicitly includes the plating reaction as side reaction running in parallel to the main intercalation reaction. The thermodynamics of the plating reaction are modeled depending on temperature and ion concentration, which differs from the often-used assumption of a constant plating condition of 0 V anode potential. The reaction kinetics are described with an Arrhenius-type rate law parameterized from an extensive literature research. Re-intercalation of plated lithium was modeled to take place either via reverse plating (solution-mediated) or via an explicit interfacial reaction (surface-mediated). At low temperatures not only the main processes (intercalation and solid-state diffusion) become slow, but also the plating reaction itself becomes slower. Using this model, we are able to predict typical macroscopic experimental observables that are indicative of plating, that is, a voltage plateau during discharge and a voltage drop upon temperature increase. A spatiotemporal analysis of the internal cell states allows a quantitative insight into the competition between intercalation and plating. Finally, we calculate operation maps over a wide range of C-rates and temperatures that allow to assess plating propensity as function of operating condition.
Passive hybridization refers to a parallel connection of photovoltaic and battery cells on the direct current level without any active controllers or inverters. We present the first study of a lithium-ion battery cell connected in parallel to a string of four or five serially-connected photovoltaic cells. Experimental investigations were performed using a modified commercial photovoltaic module and a lithium titanate battery pouch cell, representing an overall 41.7 W-peak (photovoltaic)/36.8 W-hour (battery) passive hybrid system. Systematic and detailed monitoring of this system over periods of several days with different load scenarios was carried out. A scaled dynamic synthetic load representing a typical profile of a single-family house was successfully supplied with 100 % self-sufficiency over a period of two days. The system shows dynamic, fully passive self-regulation without maximum power point tracking and without battery management system. The feasibility of a photovoltaic/lithium-ion battery passive hybrid system could therefore be demonstrated.
Simulation-based degradation assessment of lithium-ion batteries in a hybrid electric vehicle
(2017)
HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.
Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads
(2016)
This work consists of a multi-objective mixed-integer linear programming model for defining optimized schedules of components in a grid-connected microgrid. The microgrid includes a hydrogen energy system consisting of an alkaline electrolyzer, hydrogen cylinder bundles and a fuel cell for energy storage. Local generation is provided from photovoltaic panels, and the load is given by a fixed load profile combined with a flexible electrical load, which is a battery electric vehicle. The electrolyzer has ramp-up constraints which are modeled explicitly. The objective function includes, besides operational costs and an environmental indicator, a representation of peak power costs, thus leading to an overall peak load reduction under optimized operation. The model is used both for controlling a microgrid in a field trial set-up deployed in South-West Germany and for simulating the microgrid operation for defined period, thus allowing for economic system evaluation. Results from defined sample runs show that the energy storage is primarily used for trimming the peak of electricity drawn from the public grid and is not solely operated with excess power. The flexible demand operation also helps keeping the peak at its possible minimum.
Systemtechnik
(2010)
Mit dem Wetter sparen
(2010)
Kühlen mit Wärme
(2009)
Solartechnik
(2007)