Refine
Year of publication
Document Type
- Conference Proceeding (480)
- Article (reviewed) (350)
- Article (unreviewed) (110)
- Part of a Book (57)
- Book (21)
- Other (21)
- Letter to Editor (15)
- Contribution to a Periodical (10)
- Patent (7)
- Doctoral Thesis (5)
- Image (3)
- Report (3)
- Periodical Part (2)
- Moving Images (1)
Language
- English (1085) (remove)
Has Fulltext
- no (1085) (remove)
Is part of the Bibliography
- yes (1085) (remove)
Keywords
- Dünnschichtchromatographie (23)
- Kommunikation (16)
- Energieversorgung (11)
- Gamification (11)
- Intelligentes Stromnetz (11)
- Adsorption (10)
- Batterie (9)
- Brennstoffzelle (9)
- Lithiumbatterie (9)
- Metallorganisches Netzwerk (9)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (384)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (293)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (139)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (137)
- Fakultät Medien und Informationswesen (M+I) (127)
- INES - Institut für Energiesystemtechnik (87)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (74)
- ACI - Affective and Cognitive Institute (42)
- IfTI - Institute for Trade and Innovation (13)
- IMLA - Institute for Machine Learning and Analytics (12)
PET and SPECT in Psychiatry
(2021)
This book provides a comprehensive overview of the use of PET and SPECT in the classic psychiatric disorders such as depression, bipolar disorder, anxiety disorders, and schizophrenia. In addition, it discusses the application of these functional neuroimaging techniques in a variety of other conditions, including sleep disorders, eating disorders, autism, and chronic fatigue syndrome. The new edition has been extensively revised and updated to reflect the latest advances and results in nuclear imaging within the field. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be of value for all who have an interest in the field of neuroscience, from psychiatrists and radiologists/nuclear medicine specialists to interested general practitioners and cognitive psychologists. Companion volumes on the use of PET and SPECT in neurology and for the imaging of neurobiological systems complete a trilogy.
PET and SPECT in Neurology
(2021)
This book provides a comprehensive overview of the use of PET and SPECT in not only classic neurodegenerative disorders but also cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The new edition has been revised and updated to reflect recent advances and includes additional chapters, for example on the use of artificial intelligence and machine learning in imaging data analysis, the study of brain connectivity using PET and SPECT images, and the role of PET imaging in modulation of brain functioning by deep brain stimulation. The authors are renowned experts whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state of the art compendium will be invaluable for neurologists and radiologists/nuclear medicine specialists and will also be informative for interested general practitioners and geriatricians. Companion volumes on PET and SPECT in psychiatry and in neurobiological systems complete a trilogy.
This book constitutes the refereed proceedings of the 20th International TRIZ Future Conference, TFC 2020, held online at the University Cluj-Napoca, Romania, in October 2020 and sponsored by the International Federation for Information Processing.
34 chapters were carefully peer reviewed and selected from 91 conference submissions. They are organized in the following thematic sections: computing TRIZ; education and pedagogy; sustainable development; tools and techniques of TRIZ for enhancing design; TRIZ and system engineering; TRIZ and complexity; and cross-fertilization of TRIZ for innovation management.
PET and SPECT in Neurology
(2014)
PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.
Social robots not only work with humans in collaborative workspaces – we meet them in shopping malls and even more personal settings like health and care. Does this imply they should become more human, able to interpret and adequately respond to human emotions? Do we want them to help elderly persons? Do we want them to support us when we are old ourselves? Do we want them to just clean and keep things orderly – or would we accept them helping us to go to the toilet, or even feed us if we suffer from Parkinson’s disease?
The answers to these questions differ from person to person. They depend on cultural background, personal experiences – but probably most of all on the robot in question. This book covers the phenomenon of social robots from the historic roots to today’s best practices and future perspectives. To achieve this, we used a hands-on, interdisciplinary approach, incorporating findings from computer scientists, engineers, designers, psychologists, doctors, nurses, historians and many more. The book also covers a vast spectrum of applications, from collaborative industrial work over education to sales. Especially for developments with a high societal impact like robots in health and care settings, the authors discuss not only technology, design and usage but also ethical aspects.
Thus this book creates both a compendium and a guideline, helping to navigate the design space for future developments in social robotics.
Artificial Intelligence
(2020)
The TriRhenaTech alliance presents a collection of accepted papers of the cancelled tri-national 'Upper-Rhine Artificial Intelligence Symposium' planned for 13th May 2020 in Karlsruhe. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes écoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.
Artificial Intelligence
(2019)
The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes écoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.
This book offers a compendium of best practices in game dynamics. It covers a wide range of dynamic game elements ranging from player behavior over artificial intelligence to procedural content generation. Such dynamics make virtual worlds more lively and realistic and they also create the potential for moments of amazement and surprise. In many cases, game dynamics are driven by a combination of random seeds, player records and procedural algorithms. Games can even incorporate the player’s real-world behavior to create dynamic responses. The best practices illustrate how dynamic elements improve the user experience and increase the replay value.
The book draws upon interdisciplinary approaches; researchers and practitioners from Game Studies, Computer Science, Human-Computer Interaction, Psychology and other disciplines will find this book to be an exceptional resource of both creative inspiration and hands-on process knowledge.
PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, β-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed.
Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology".
PET and SPECT in Psychiatry
(2014)
PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects – such as suicide, sleep, eating disorders, and autism – are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
A systematic toxicological analysis procedure using high-performance thin layer chromatography in combination with fibre optical scanning densitometry for identification of drugs in biological samples is presented. Two examples illustrate the practicability of the technique. First, the identification of a multiple intake of analgesics: codeine, propyphenazone, tramadol, flupirtine and lidocaine, and second, the detection of the sedative diphenhydramine. In both cases, authentic urine specimens were used. The identifications were carried out by an automatic measurement and computer-based comparison of in situ UV spectra with data from a compiled library of reference spectra using the cross-correlation function. The technique allowed a parallel recording of chromatograms and in situ UV spectra in the range of 197–612 nm. Unlike the conventional densitometry, a dependency of UV spectra by concentration of substance in a range of 250–1000 ng/spot was not observed.
Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.
Energy Performance of Verandas in the Building Retrofit Process (PDF Download Available). Available from: https://www.researchgate.net/publication/303093420_Energy_Performance_of_Verandas_in_the_Building_Retrofit_Process [accessed Jul 5, 2017].
The excessive control signaling in Long Term Evolution networks required for dynamic scheduling impedes the deployment of ultra-reliable low latency applications. Semi-persistent scheduling was originally designed for constant bit-rate voice applications, however, very low control overhead makes it a potential latency reduction technique in Long Term Evolution. In this paper, we investigate resource scheduling in narrowband fourth generation Long Term Evolution networks through Network Simulator (NS3) simulations. The current release of NS3 does not include a semi-persistent scheduler for Long Term Evolution module. Therefore, we developed the semi-persistent scheduling feature in NS3 to evaluate and compare the performance in terms of uplink latency. We evaluate dynamic scheduling and semi-persistent scheduling in order to analyze the impact of resource scheduling methods on up-link latency.
Vehicle-to-Everything (V2X) communication promises improvements in road safety and efficiency by enabling low-latency and reliable communication services for vehicles. Besides using Mobile Broadband (MBB), there is a need to develop Ultra Reliable Low Latency Communications (URLLC) applications with cellular networks especially when safety-related driving applications are concerned. Future cellular networks are expected to support novel latencysensitive use cases. Many applications of V2X communication, like collaborative autonomous driving requires very low latency and high reliability in order to support real-time communication between vehicles and other network elements. In this paper, we classify V2X use-cases and their requirements in order to identify cellular network technologies able to support them. The bottleneck problem of the medium access in 4G Long Term Evolution(LTE) networks is random access procedure. It is evaluated through simulations to further detail the future limitations and requirements. Limitations and improvement possibilities for next generation of cellular networks are finally detailed. Moreover, the results presented in this paper provide the limits of different parameter sets with regard to the requirements of V2X-based applications. In doing this, a starting point to migrate to Narrowband IoT (NB-IoT) or 5G - solutions is given.
The next generation cellular networks are expected to improve reliability, energy efficiency, data rate, capacity and latency. Originally, Machine Type Communication (MTC) was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc., but there is additional demand around applications with low latency requirements, like industrial automation, driver-less cars, and so on. Improvements are required in 4G Long Term Evolution (LTE) networks towards the development of next generation cellular networks for providing very low latency and high reliability. To this end, we present an in-depth analysis of parameters that contribute to the latency in 4G networks along with a description of latency reduction techniques. We implement and validate these latency reduction techniques in the open-source network simulator (NS3) for narrowband user equipment category Cat-Ml (LTE-M) to analyze the improvements. The results presented are a step towards enabling narrowband Ultra Reliable Low Latency Communication (URLLC) networks.
Integration of BACNET OPC UA-Devices Using a JAVA OPC UA SDK Server with BACNET Open Source Library
(2014)
Ripple: Overview and Outlook
(2015)
In this paper we integrate the ideas of network coding and relays into an existing practical network architecture used in a wireless network scenario. Specifically, we use the COPE architecture to test our ideas. Since previous works have focused on the communication aspect at the physical layer level, we attempt to take it one step further by including the MAC layer. Our idea is based on information theoretic concepts developed by Shannon in order to reliably apply network coding to increase the net throughput.
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
Gas adsorption studies of CO2 and N2 in spatially aligned double-walled carbon nanotube arrays
(2013)
The suffix-free-prefix-free hash function construction and its indifferentiability security analysis
(2012)
In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value (IV) of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) strengthening in the padding functionality of the hash functions. We propose a generic n-bit-iterated hash function framework based on an n-bit compression function called suffix-free-prefix-free (SFPF) that works for arbitrary IVs and does not possess MD strengthening. We formally prove that SFPF is indifferentiable from a random oracle (RO) when the compression function is viewed as a fixed input-length random oracle (FIL-RO). We show that some hash function constructions proposed in the literature fit in the SFPF framework while others that do not fit in this framework are not indifferentiable from a RO. We also show that the SFPF hash function framework with the provision of MD strengthening generalizes any n-bit-iterated hash function based on an n-bit compression function and with an n-bit chaining value that is proven indifferentiable from a RO.
Since their dawning, space communications have been among the strongest driving applications for the development of error correcting codes. Indeed, space-to-Earth telemetry (TM) links have extensively exploited advanced coding schemes, from convolutional codes to Reed-Solomon codes (also in concatenated form) and, more recently, from turbo codes to low-density parity-check (LDPC) codes. The efficiency of these schemes has been extensively proved in several papers and reports. The situation is a bit different for Earth-to-space telecommand (TC) links. Space TCs must reliably convey control information as well as software patches from Earth control centers to scientific payload instruments and engineering equipment onboard (O/B) spacecraft. The success of a mission may be compromised because of an error corrupting a TC message: a detected error causing no execution or, even worse, an undetected error causing a wrong execution. This imposes strict constraints on the maximum acceptable detected and undetected error rates.
The three lines of defense model (TLoD) aims to provide a simple and effective way to improve coordination and enhance communications on risk management and control by clarifying the essential roles and duties of different governance functions. Without effective coordination of these governance functions, work can be duplicated or key risks may be missed or misjudged. To address these challenges, professional standards recommend that the chief audit executive (CAE) coordinates activities with other internal and external governance stakeholders (assurance providers). We consider survey responses from 415 CAEs from Austria, Germany, and Switzerland to analyze determinants that help to implement the TLoD without any challenges and to explore the extent of (coordination) challenges between the internal audit function and the respective governance stakeholders. Our results show a great variance in the extent of coordination challenges dependent on different determinants and the respective governance stakeholder.
A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A Butler–Volmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of electrochemical oxygen reduction. Validated by using published V–I experiments, the model is then used to analyze the effects of operating conditions on current output and water management, especially net water transport coefficient along the channel. For a power PEMFC, the long-channel configuration is helpful for internal humidification and anode water removal, operating in counterflow mode with proper gas flow rate and humidity. In time domain, a typical transient process with closed anode is also investigated.
The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called ‘configuration of system dynamics’, which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.
This work provides a series of methane adsorption isotherms and breakthrough curves on one 5A zeolite and one activated carbon. Breakthrough curves of CH4 were obtained from dynamic column measurements at different temperature and pressure conditions for concentrations of 4.4 – 17.3 mol.‐% in H2/CH4 mixtures. A simple model was developed to simulate the curves using measured and calculated data inputs. The results show that the model predictions agree very well with the experiments.
The separation of nitrogen and methane from hydrogen-rich mixtures is systematically investigated on a recently developed binder-free zeolite 5A. For this adsorbent, the present work provides a series of experimental data on adsorption isotherms and breakthrough curves of nitrogen and methane, as well as their mixtures in hydrogen. Isotherms were measured at temperatures of 283–313 K and pressures of up to 1.0 MPa. Breakthrough curves of CH4, N2, and CH4/N2 in H2 were obtained at temperatures of 300–305 K and pressures ranging from 0.1 to 6.05 MPa with different feed concentrations. An LDF-based model was developed to predict breakthrough curves using measured and calculated data as inputs. The number of parameters and the use of correlations were restricted to focus on the importance of measured values. For the given assumptions, the results show that the model predictions agree satisfactorily with the experiments under the different operating conditions applied.
Regarding the importance of adsorptive removal of carbon monoxide from hydrogen-rich mixtures for novel applications (e.g. fuel cells), this work provides a series of experimental data on adsorption isotherms and breakthrough curves of carbon monoxide. Three recently developed 5A zeolites and one commercial activated carbon were used as adsorbents. Isotherms were measured gravimetrically at temperatures of 278–313 K and pressures up to 0.85 MPa. Breakthrough curves of CO were obtained from dynamic column measurements at temperatures of 298–301 K, pressures ranging from 0.1 MPa to ca. 6 MPa and concentrations of CO in H2/CO mixtures of 5–17.5 mol%. A simple mathematical model was developed to simulate breakthrough curves on adsorbent beds using measured and calculated data as inputs. The number of parameters and the use of correlations to evaluate them were restricted in order to focus the importance of measured values. For the given assumptions and simplifications, the results show that the model predictions agree satisfactorily with the experimental data at the different operating conditions applied.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
Im Rahmen einer Master Thesis wurde ausgehend von einem vorhandenen System On Chip Design, welches eingehende EKG-Datensignale verarbeitet, das bestehende System so erweitert dass es komplett über den standardisierten SPI-Bus steuerbar und auslesbar ist.
Background: Increasing awareness of the importance of evidence-based medicine is demonstrated not only by an increasing number of articles addressing it but also by a specialty-wide evidence-based medicine initiative. The authors critically analyzed the quality of reporting of randomized controlled trials published in this Journal over a 21-year period (1990 to 2010).
Methods: A hand search was conducted, including all issues of Plastic and Reconstructive Surgery from January of 1990 to December of 2010. All randomized controlled trials published during this time period were identified with the Cochrane decision tree for identification of randomized controlled trials. To assess the quality of reporting, a modification of the checklist of the Consolidated Standard of Reporting Trials Statement was used.
Results: Of 7121 original articles published from 1990 to 2010 in the Journal, 159 (2.23 percent) met the Cochrane criteria. A significant increase in the absolute number of randomized controlled trials was seen over the study period (p < 0.0001). The median quality of these trials from 1990 to 2010 was "fair," with a trend toward improved quality of reporting over time (p = 0.127).
Conclusions: A favorable trend is seen with respect to an increased number of published randomized controlled trials in Plastic and Reconstructive Surgery. Adherence to standard reporting guidelines is recommended, however, to further improve the quality of reporting. Consideration may be given to providing information regarding the quality of reporting in addition to the "level of evidence pyramid," thus facilitating critical appraisal.
It is the purpose of this paper to address ethical issues concerning the development and application of Assistive Technology at Workplaces (ATW). We shall give a concrete technical concept how such technology might be constructed and propose eight technical functions it should adopt in order to serve its purpose. Then, we discuss the normative questions why one should use ATW, and by what means. We argue that ATW is good to the extent that it ensures social inclusion and consider four normative domains in which its worth might consists in. In addition, we insist that ATW must satisfy two requirements of good workplaces, which we specify as (a) an exploitation restraint and (b) a duty of care.
Accelerated transformation of the society and industry through digi-talization, artificial intelligence and other emerging technologies has intensified the need for university graduates that are capable of rapidly finding breakthrough solutions to complex problems, and can successfully implement innovation con-cepts. However, there are only few universities making significant efforts to com-prehensively incorporate creative and systematic tools of TRIZ (theory of in-ventive problem solving) and KBI (knowledge-based innovation) into their de-gree structure. Engineering curricula offer little room for enhancing creativity and inventiveness by means of discipline‐specific subjects. Moreover, many ed-ucators mistakenly believe that students are either inherently creative, or will in-evitably obtain adequate problem-solving skills as a result of their university study. This paper discusses challenges of intelligent integration of TRIZ and KBI into university curricula. It advocates the need for development of standard guidelines and best-practice recommendations in order to facilitate sustainable education of ambitious, talented, and inventive specialists. Reflections of educa-tors that teach TRIZ and KBI to students from mechanical, electrical, process engineering, and business administration are presented.