Refine
Document Type
- Image (3) (remove)
Has Fulltext
- no (3) (remove)
Keywords
- Banana residues (1)
- Biogas Potential (1)
- Privatsphäre (1)
- Smart Grid (1)
Optical Möbius Strip
(2011)
Do you know that for each banana bunch the complete plant must be cut as well? Only in Brazil 440 million trees are planted annually. With an average weight of 30 kg per banana plant you can estimate about 13,5 million tons of banana residues per year. Although there exist some projects to use these residues for the production of valuable products (e.g fibers for textile and paper production) most of this organic waste material is unused and left for composting on the farmland.
The basic idea of this project is to evaluate this organic waste material for converting it to a renewable and CO2 neutral fuel. Therefore, the different parts of the banana plant (heart, leaves and pseudo stem) were analyzed regarding their biogas potential (specific biogas yield and biogas production kinetics). In further studies the effect of mechanical and enzymatic pretreatments of the different parts of the plants was investigated. This examination could then be the basis for an energetic usage of this organic residue.
The biogas batch experiments were performed according to the german guideline VDI 4630 in 2-L-Batch reactors at 37°C. As biogas substrates, the heart, the leaves and the pseudo stem of the banana plant residue with and without enzymatic/mechanical pretreatment were used.
The different parts of the banana plants result in a specific biogas production yield in the range of 260-470 norm liters per kg organic dry mass.
To determine the influence of the mechanical pretreatment (particle size 1-15 mm) on the biogas production kinetics, the kinetic constants were defined and calculated. The reduction of the particle size leads to an improved biogas production kinetics. Therefore experiments will demonstrate, if the results from the batch experiments can be converted in the continuous fed biogas reactor. The experiments of the enzymatic pretreatment are still under investigation.
The aim of the smart grid is to achieve more efficient,
distributed and secure supply of energy over the traditional power grid by using a bidirectional information flow between the grid agents (e.g. generator node, customer). One of the key optimization problems in smart grid is to produce power among generator nodes with a minimum cost while meeting the customer demand, known as Economic Dispatch Problem
(EDP). In recent years, many distributed approaches to solve EDP have been proposed. However, protecting the privacy-sensitive data of individual generator nodes has been largely overlooked in the existing solutions. In this work, we show an attack against an existing auction-based EDP protocol considering a non-colluding semi-honest adversary. We briefly introduce our approach to a practical privacy-preserving EDP solution as our work in progress.