Refine
Document Type
- Other (21) (remove)
Language
- English (21) (remove)
Has Fulltext
- no (21) (remove)
Keywords
- CST (3)
- HF-Ablation (3)
- Götz von Berlichingen (2)
- hand prosthesis (2)
- 3D computer-aided design (1)
- 3D multi-material polymer printing (1)
- CRT (1)
- Finite-Elemente-Methode (1)
- Functional neuroimaging (1)
- IVD (1)
In the present work, nonlinearities in temperature
compensating (TC) SAW devices are investigated. The materials
used are LiNbO3-rot128YX as the substrate and Copper electrodes covered with a SiO2-layer as the compensating layer.
In order to understand the role of these materials for the
nonlinearities in such acoustic devices, a FEM simulation model
in combination with a perturbation approach [1] is applied.
The nonlinear tensor data of the different materials involved
in TC-SAW devices have been taken from literature, but were
partially modified to fit experimental data by introducing scaling factors. An effective nonlinearity constant is determined
by comparison of nonlinear P-matrix simulations to IMD3
measurements of test filters. By employing these constants in
nonlinear periodic P-matrix simulations a direct comparison to
nonlinear periodic FEM-simulations yields the scaling factors for
the material used. Thus, the contribution of different materials
to the nonlinear behavior of TC-SAW devices is obtained and
the role of metal electrodes is discussed in detail
Background: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients (P) with sinus rhythm, reduced left ventricular (LV) ejection fraction (EF) and electrical ventricular desynchronization. The aim of the study was to evaluate electrical interventricular delay (IVD) and left ventricular delay (LVD) in right ventricular (RV) pacemaker pacing before upgrading to CRT BV pacing.
Methods: HF P (n=11, age 69.0 ± 7.9 years, 1 female, 10 males) with DDD pacemaker (n=10), DDD defibrillator (n=1), RV pacing, New York Heart Association (NYHA) class 3.0 ± 0.2 and 24.5 ± 4.9 % LVEF were measured by surface ECG and transesophageal bipolar LV ECG before upgrading to CRT defibrillator (n=8) and CRT pacemaker (n=3). IVD was measured between onset of QRS in the surface ECG and onset of LV signal in the transesophageal ECG. LVD was measured between onset and offset of LV signal in the transesophageal ECG. CRT atrioventricular (AV) and BV pacing delay were optimized by impedance cardiography.
Results: Interventricular and intraventricular desynchronization in RV pacemaker pacing were 228.2 ± 44.8 ms QRS duration, 86.5 ± 32.8ms IVD, 94.4 ± 23.8ms LVD, 2.6 ± 0.8 QRS-IVD-ratio with correlation between IVD and QRS-IVD-ratio (r=-0.668 P=0.0248) and 2.3 ± 0.7 QRS-LVD-ratio. The LVEF-IVD-ratio was 0.3 ± 0.1 with correlation between IVD and LVEF-IVD-ratio (r=-0.8063 P=0.00272) and with correlation between QRS duration and LVEF-IVD-ratio (r=-0.7251 P=0.01157). Optimal sensing and pacing AV delay were 128.3 ± 24.8 ms AV delay after atrial sensing (n=6) and 173.3 ± 40.4 ms AV delay after atrial pacing (n=3). Optimal BV pacing delay was -4.3 ± 11.3 ms between LV and RV pacing (n=7). During 30.4 ± 29.6 month CRT follow-up, the NYHA class improved from 3.1 ± 0.2 to 2.2 ± 0.3.
Conclusions: Transesophageal electrical IVD and LVD in RV pacemaker pacing may be additional useful ventricular desynchronization parameters to improve P selection for upgrading RV pacemaker pacing to CRT BV pacing.
Passive hybridization of battery cell and photovoltaic cell: modeling and experimental validation
(2017)
Muli-scale thermos-electrochemical modelling of aging mechanisms in an LFP/graphite lithium-ion cell
(2017)
This paper is discussing the development of a wireless Indoor Smart Gardening System with the focus on energy autonomous working. The Smart Gardening System, which is presented in this paper consists of a network of energy autonomous wireless sensor nodes which are used for monitoring important plant parameters like air temperature, soil moisture, pressure or humidity and in future to control an actuator for the plant irrigation and to measure further parameter as light and fertilizer level. Solar energy harvesting is used for powering the wireless nodes without the usage of a battery. Comparable Smart Gardening Systems are usually battery-powered. Furthermore, the overall Smart Gardening System consists of a battery powered gateway based on a Raspberry Pi 3 system, which controls the wireless nodes and collects their sensor data. The gateway is able to send the information to an internet server application and via Wi-Fi to mobile devices. Particularly the architecture of the energy autonomous wireless nodes will be considered because fully energy autonomous wireless networks could not be implemented without special concepts for the energy supply and architecture of the wireless nodes.
In this entry, the 3D CAD reconstructions and 3D multi-material polymer replica printings of knight Götz von Berlichingen´s first „Iron Hand,“ which were developed in the last few years at Offenburg University, are presented. Even by today's standards, the first “Iron Hand”–as could be shown in the replicas–demonstrates sophisticated mechanics and well thought-out functionality and still offers inspiration and food for discussion when it comes to the question of an artificial prosthetic replacement for a hand.
Online comment on: "Printing ferromagnetic domains for untethered fast-transforming soft materials"
(2018)
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiac electrophysiological studies (EPS) and high-frequency (HF) ablations.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST (Computer Simulation Technology, Darmstadt) was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate normal sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter (Fig.). Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: The simulation of complex cardiologic structures has the potential to replace clinical studies due to its high efficiency regarding time and costs. Furthermore, the method is more careful for the patients’ health than the conventional ways. The aim of the study was to create an anatomic CAD heart rhythm model (HRM) as accurate as possible, and to show its usefulness for cardiac electrophysiological studies (EPS) and high-frequency (HF) ablations.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST (Computer Simulation Technology, Darmstadt) was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate normal sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter (Fig.). Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations
(2017)
Background: Target of the study was to create an accurate anatomic CAD heart rhythm model, and to show its usefulness for cardiac electrophysiological studies and high-frequency ablations. The method is more careful for the patients’ health and has the potential to replace clinical studies due to its high efficiency regarding time and costs.
Methods: All natural heart components of the new HRM were based on MRI records, which guaranteed electronic functionality. The software CST was used for the construction, while CST’s material library assured genuine tissue properties. It should be applicable to simulate different heart rhythm diseases as well as various diffusions of electromagnetic fields, caused by electrophysiological conduction, inside the heart tissue.
Results: It was achievable to simulate sinus rhythm and fourteen different heart rhythm disturbance with different atrial and ventricular conduction delays. The simulated biological excitation of healthy and sick HRM were plotted by simulated electrodes of four polar right atrial catheter, six polar His bundle catheter, ten polar coronary sinus catheter, four polar ablation catheter and eight polar transesophageal left cardiac catheter. Accordingly, six variables were rebuilt and inserted into the anatomic HRM in order to establish heart catheters for ECG monitoring and HF ablation. The HF ablation catheters made it possible to simulate various types of heart rhythm disturbance ablations with different HF ablation catheters and also showed a functional visualisation of tissue heating. The use of tetrahedral meshing HRM made it attainable to store the results faster accompanied by a higher degree of space saving. The smart meshing function reduced unnecessary high resolutions for coarse structures.
Conclusions: The new HRM for EPS simulation may be additional useful for simulation of heart rhythm disturbance, cardiac pacing, HF ablation and for locating and identification of complex fractioned signals within the atrium during atrial fibrillation HF ablation.
The ability to detect a target signal masked by noise is improved in normal-hearing listeners
when interaural phase differences (IPDs) between the ear signals exist either in the masker or in
the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a
coding strategy providing the best possible access to IPDs is highly desirable. Outcomes of a
previous study (Zirn, Arndt et al. 2016) revealed that a subset of BiCI users showed improved
IPD detection thresholds with the fine structure processing strategy FS4 compared to the
constant rate strategy HDCIS using narrowband stimuli. In contrast, little differences between
the coding strategies were found for broadband stimuli with regard to binaural speech
intelligibility level differences (BILD) as an estimate of binaural unmasking. Compared to normalhearing
listeners (7.5 ± 1.2 dB) BILD were small in BiCI users (around 0.5 dB with both coding
strategies).
In the present work, we investigated the influence of binaural fitting parameters on BILD. In our
cohort of BiCI users many were implanted with electrode arrays differing in length left versus
right. Because this length difference typically corresponded to the distance of two electrode
contacts the first modification of bilateral fitting was a tonotopic adjustment by deactivation of the
most apical electrode contact on the side with the deeper inserted array (tonotopic approach).
The second modification was the isolation of the residual, most apical electrode contacts by
deactivation of the basally adjacent electrode contact on each side (tonotopic sparse approach).
Applying these modifications, BILD improved by up to 1.5 dB.