Refine
Document Type
- Conference Proceeding (69) (remove)
Has Fulltext
- no (69) (remove)
Keywords
- Heart rhythm model (5)
- Modeling and simulation (5)
- Cryoballoon catheter ablation (2)
- Supraventricular tachycardia (2)
- 3D print (1)
- AC machines (1)
- Air Pollution (1)
- Amplitude and Phase Errors (1)
- Atrial fibrillation (1)
- Battery storage (1)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (69) (remove)
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
Elektronische Türschilder zur Darstellung von Informationen sind insbesondere in öffentlichen Gebäuden zwischenzeitlich weit verbreitet. Die Varianz dieser elektronischen Türschilder reicht vom Tablet-basierten Türschild bis hin zum PC-basierten Türschild mit externem Bildschirm. Zumeist werden die Systeme mit 230 V betrieben. Bei einer großen Summe von Türschildern in öffentlichen Gebäuden kann dies zu einem signifikanten Umsatz an Energie führen. Im Rahmen dieses Papers wird die Entwicklung eines energieautarken arbeiten Türschildes vorgestellt, bei dem ein E-Paper-Display zum Einsatz kommt. Das Türschild lässt sich per Smartphone-App und NFC-Schnittstelle konfigurieren. Es wird insbesondere auf das Low-Power-Hardware-Design der Elektronik und energetische Aspekte eingegangen.
Current training methods for deep neural networks boil down to very high dimensional and non-convex optimization problems which are usually solved by a wide range of stochastic gradient descent methods. While these approaches tend to work in practice, there are still many gaps in the theoretical understanding of key aspects like convergence and generalization guarantees, which are induced by the properties of the optimization surface (loss landscape). In order to gain deeper insights, a number of recent publications proposed methods to visualize and analyze the otimization surfaces. However, the computational cost of these methods are very high, making it hardly possible to use them on larger networks. In this paper, we present the GradVis Toolbox, an open source library for efficient and scalable visualization and analysis of deep neural network loss landscapes in Tesorflow and PyTorch. Introducing more efficient mathematical formulations and a novel parallelization scheme, GradVis allows to plot 2d and 3d projections of optimization surfaces and trajectories, as well as high resolution second order gradient information for large networks.
In this work a method for the estimation of current slopes induced by inverters operating interior permanent magnet synchronous machines is presented. After the derivation of the estimation algorithm, the requirements for a suitable sensor setup in terms of accuracy, dynamic and electromagnetic interference are discussed. The boundary conditions for the estimation algorithm are presented with respect to application within high power traction systems. The estimation algorithm is implemented on a field programmable gateway array. This moving least-square algorithm offers the advantage that it is not dependent on vectors and therefore not every measured value has to be stored. The summation of all measured values leads to a significant reduction of the required storage units and thus decreases the hardware requirements. The algorithm is designed to be calculated within the dead time of the inverter. Appropriate countermeasures for disturbances and hardware restrictions are implemented. The results are discussed afterwards.
A Novel Approach of High Dynamic Current Control of Interior Permanent Magnet Synchronous Machines
(2019)
Harmonic-afflicted effects of permanent magnet synchronous machines with high power density are hardly faced by traditional current PI controllers, due to limited controller bandwidth. As a consequence, currents and lastly torque ripples appear. In this paper, a new deadbeat current controller architecture has been presented, which is capable to encounter the effects of these harmonics. This new control algorithm, here named “Hybrid-Deadbeat-Controller”, combines the stability and the low steady-state errors offered by common PI regulators with the high dynamic offered by the deadbeat control. Therefore, a novel control algorithm is proposed, capable of either compensating the current harmonics in order to get smoother currents or to control a varying reference value to achieve a smoother torque. The information needed to calculate the optimal reference currents is based on an online parameter estimation feeding an optimization algorithm to achieve an optimal torque output and will be investigated in future research. In order to ensure the stability of the controller over the whole area of operation even under the influence of effects changing the system’s parameter, this work as well focusses on the robustness of the “hybrid” dead beat controller.
This paper presents the use of model predictive control (MPC) based
approach for peak shaving application of a battery in a Photovoltaic (PV) battery
system connected to a rural low voltage gird. The goals of the MPC are to shave
the peaks in the PV feed-in and the grid power consumption and at the same
time maximize the use of the battery. The benefit to the prosumer is from the
maximum use of the self-produced electricity. The benefit to the grid is from the
reduced peaks in the PV feed-in and the grid power consumption. This would
allow an increase in the PV hosting and the load hosting capacity of the grid.
The paper presents the mathematical formulation of the optimal control problem
along with the cost benefit analysis. The MPC implementation scheme in the
laboratory and experiment results have also been presented. The results show
that the MPC is able to track the deviation in the weather forecast and operate
the battery by solving the optimal control problem to handle this deviation.
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks.
Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.
Background: The application of high-frequency ablation is used for the treatment of tachycardia arrhythmias and is a respected method. Ablation with high frequency current leads to the targeted heat destruction of myocardial tissue at specific sites and thus prevents the pathological propagation of excitation through these structures.
Purpose: The aim of this study was to simulate heat propagation during RF ablation with modeled electrodes in different sizes and materials. The simulation was performed on atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) and atrial flutter (AFL).
Methods: Using the modeling and simulation software CST, ablation catheters with 4 mm and 8 mm tip electrodes were modeled from gold and platinum for each. The designed catheters correspond to the manufacturer"s specifications of Medtronic, Biotronik and Osypka. The catheters were integrated into the Offenburg heart rhythm model to simulate and compare the heat propagation during an ablation application, which also takes into account the blood flow in the four heart chambers. A power of 5 W - 40 W was simulated for the 4 mm electrodes and a power of 50 W - 80 W for the 8 mm electrodes.
Results: During the simulated HF ablation application, the temperature at the ablation electrode was measured at different powers. This is 40.67°C at 5 W, 44.34°C at 10 W, 51.76°C at 20 W, 59.0°C at 30 W, and 66.33°C at 40 W. The measured temperature during 40 W application is 39.5°C at 0,5 mm depth in the myocardium and 37.5°C at 2 mm depth.
In the simulation, the 8 mm platinum electrode reached an ablation temperature of 72.85°C at its tip during an applied power of 60 W. In contrast, the 8 mm platinum electrode reached a depth of 5 mm at 39.5 C° and at a depth of 2 mm at 37.5 °C. In contrast, the 8 mm gold electrode reached a temperature of 64.66°C with the same performance. This is due to the thermal properties of gold, which has a better thermal conductivity than platinum.
Conclusions: CST offers the possibility to carry out a static and dynamic simulation of a heart model and the ablation electrodes integrated in it during an HF ablation. In variation with different electrode sizes and materials, therapy methods for the treatment of AVNRT, AVRT and AFL can be optimized
Narrowband IoT (NB-IoT) as a radio access technology for the cellular Internet of Things (cIoT) is getting more traction due to attractive system parameters, new proposals in the 3 rd Generation Partnership Project (3GPP) Release 14 for reduced power consumption and ongoing world-wide deployment. As per 3GPP, the low-power and wide-area use cases in 5G specification will be addressed by the early NB-IoT and Long-Term Evolution for Machines (LTE-M) based technologies. Since these cIoT networks will operate in a spatially distributed environment, there are various challenges to be addressed for tests and measurements of these networks. To meet these requirements, unified emulated and field testbeds for NB-IoT-networks were developed and used for extensive performance measurements. This paper analyses the results of these measurements with regard to RF coverage, signal quality, latency, and protocol consistency.
Printed electronics (PE) is a fast growing technology with promising applications in wearables, smart sensors and smart cards since it provides mechanical flexibility, low-cost, on-demand and customizable fabrication. To secure the operation of these applications, True Random Number Generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of PE circuits results in high intrinsic variation due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this paper, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field effect transistors (EGFETs). The proposed memory-based TRNG circuit can operate at low voltages (≤ 1 V ), it is hence suitable for low-power applications. We also propose a flow which tunes the printed resistors of the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behaviour. The results show that the overall process variation of the TRNGs is mitigated by 110 times, and the simulated TRNGs pass the National Institute of Standards and Technology Statistical Test Suite.
Background: Transesophageal left atrial (LA) pacing and transesophageal LA ECG recording are semi-invasive techniques for diagnostic and therapy of supraventricular rhythm disturbance. Cardiac resynchronization therapy (CRT) with right atrial (RA) sensed biventricular pacing is an established therapy for heart failure patients with reduced left ventricular (LV) ejection fraction, sinus rhythm and interventricular electrical desynchronization.
Purpose: The aim of the study was to evaluate electromagnetic and voltage pacing fields of the combination of RA pacing, LA pacing and biventricular pacing in patients with long interatrial and interventricular electrical desynchronization.
Methods: The modelling and electromagnetic simulations of transesophageal LA pacing in combination with RA pacing and biventricular pacing would be staged and analyzed with the CST (Computer Simulation Technology) software. Different electrodes were modelled in order to simulate different types of bipolar pacing in the 3D-CAD Offenburg heart rhythm model: The bipolar Solid S (Biotronik) electrode where modelled for RA pacing and right ventricular (RV) pacing, Attain 4194 (Medtronic) for LV pacing and TO8 (Osypka) multipolar esophageal electrode with hemispheric electrodes for LA pacing.
Results: The pacemaker amplitudes for the electromagnetic pacing simulations were performed with 3 V for RA pacing, 1.5 V for RV pacing, 50 V for LA pacing and 3V for LV pacing with pacing impulse duration of 0.5 ms for RA, RV and LV pacing and 10 ms for LA pacing. The atrioventricular pacing delay after RA pacing was 140 ms. The different pacing modes AAI, VVI, DDD, DDD0V and DDD0D were evaluated for the analysis of the electric pacing field propagation of pacemaker, CRT and LA pacing. The pacing results were compared at minimum (LOW) and maximum (HIGH) parameter settings. While the LOW setting produced fewer tetrahedral and more inaccurate results, the HIGH setting produced many tetrahedral and therefore more accurate results.
Conclusions: The simulation of the combination of transesophageal LA pacing with RA sensed biventricular pacing is possible with the Offenburg heart rhythm model. The new temporary 4-chamber pacing method may be additional useful method in CRT non-responders with long interatrial electrical delay.
Machine learning (ML) has become highly relevant in applications across all industries, and specialists in the field are sought urgently. As it is a highly interdisciplinary field, requiring knowledge in computer science, statistics and the relevant application domain, experts are hard to find. Large corporations can sweep the job market by offering high salaries, which makes the situation for small and medium enterprises (SME) even worse, as they usually lack the capacities both for attracting specialists and for qualifying their own personnel. In order to meet the enormous demand in ML specialists, universities now teach ML in specifically designed degree programs as well as within established programs in science and engineering. While the teaching almost always uses practical examples, these are somewhat artificial or outdated, as real data from real companies is usually not available. The approach reported in this contribution aims to tackle the above challenges in an integrated course, combining three independent aspects: first, teaching key ML concepts to graduate students from a variety of existing degree programs; second, qualifying working professionals from SME for ML; and third, applying ML to real-world problems faced by those SME. The course was carried out in two trial periods within a government-funded project at a university of applied sciences in south-west Germany. The region is dominated by SME many of which are world leaders in their industries. Participants were students from different graduate programs as well as working professionals from several SME based in the region. The first phase of the course (one semester) consists of the fundamental concepts of ML, such as exploratory data analysis, regression, classification, clustering, and deep learning. In this phase, student participants and working professionals were taught in separate tracks. Students attended regular classes and lab sessions (but were also given access to e-learning materials), whereas the professionals learned exclusively in a flipped classroom scenario: they were given access to e-learning units (video lectures and accompanying quizzes) for preparation, while face-to-face sessions were dominated by lab experiments applying the concepts. Prior to the start of the second phase, participating companies were invited to submit real-world problems that they wanted to solve with the help of ML. The second phase consisted of practical ML projects, each tackling one of the problems and worked on by a mixed team of both students and professionals for the period of one semester. The teams were self-organized in the ways they preferred to work (e.g. remote vs. face-to-face collaboration), but also coached by one of the teaching staff. In several plenary meetings, the teams reported on their status as well as challenges and solutions. In both periods, the course was monitored and extensive surveys were carried out. We report on the findings as well as the lessons learned. For instance, while the program was very well-received, professional participants wished for more detailed coverage of theoretical concepts. A challenge faced by several teams during the second phase was a dropout of student members due to upcoming exams in other subjects.
Estimation of Scattering and Transfer Parameters in Stratified Dispersive Tissues of the Human Torso
(2021)
The aim of this study is to understand the effect of the various layers of biological tissues on electromagnetic radiation in a certain frequency range. Understanding these effects could prove crucial in the development of dynamic imaging systems under operating environments during catheter ablation in the heart. As the catheter passes through some arterial paths in the region of interest inside the heart through the aorta, a three-dimensional localization of the catheter is required. In this paper, a study is given on the detection of the catheter by using electromagnetic waves. Therefor, an appropriate model for the layers of the human torso is defined and simulated without and with an inserted electrode.
The precise positioning of mobile systems is a prerequisite for any autonomous behavior, in an industrial environment as well as for field robotics. The paper describes the set up for an experimental platform and its use for the evaluation of simultaneous localization and mapping (SLAM) algorithms. Two approaches are compared. First, a local method based on point cloud matching and integration of inertial measurement units is evaluated. Subsequent matching makes it possible to create a three-dimensional point cloud that can be used as a map in subsequent runs. The second approach is a full SLAM algorithm, based on graph relaxation models, incorporating the full sensor suite of odometry, inertial sensors, and 3D laser scan data.
A novel approach for synchronization and calibration of a camera and an inertial measurement unit (IMU) in the research-oriented visual-inertial mapping-and localization-framework maplab is presented. Mapping and localization are based on detecting different features in the environment. In addition to the possibility of creating single-case maps, the included algorithms allow merging maps to increase mapping accuracy and obtain large-scale maps. Furthermore, the algorithms can be used to optimize the collected data. The preliminary results show that after appropriate calibration and synchronization maplab can be used efficiently for mapping, especially in rooms and small building environments.
Mit der Implementierung sowie einer anschließenden aussagekräftigen Evaluierung, soll das, visuelle-inertiale Kartierungs- und Lokalisierungssystem maplab analysiert werden. Hierbei basiert die Kartierung bzw. Lokalisierung auf der Detektion von Umgebungsmerkmalen. Neben der Möglichkeit der Kartenerstellung besteht ferner die Option, mehrere Karten zu fusionieren und somit weitreichende Gebiete zu kartieren sowie für weitere Datenauswertungen zu nutzen. Aufgrund der Durchführung und Bewertung der Ergebnisse in unterschiedlichen Anwendungsszenarien zeigt sich, dass maplab besonders zur Kartierung von Räumen bzw. kleinen Gebäudekomplexen geeignet ist. Die Möglichkeit der Kartenfusionierung bietet weiterhin die Option, den Informationsgehalt von Karten zu erhöhen, welches die Effektivität für eine anschließende Lokalisierung steigert. Bei wachsender Kartierungsgröße hingegen zeigt sich jedoch eine Vergrößerung geometrischer Inkonsistenzen.
The paper describes a systematic approach for a precise short-time cloud coverage prediction based on an optical system. We present a distinct pre-processing stage that uses a model based clear sky simulation to enhance the cloud segmentation in the images. The images are based on a sky imager system with fish-eye lens optic to cover a maximum area. After a calibration step, the image is rectified to enable linear prediction of cloud movement. In a subsequent step, the clear sky model is estimated on actual high dynamic range images and combined with a threshold based approach to segment clouds from sky. In the final stage, a multi hypothesis linear tracking framework estimates cloud movement, velocity and possible coverage of a given photovoltaic power station. We employ a Kalman filter framework that efficiently operates on the rectified images. The evaluation on real world data suggests high coverage prediction accuracy above 75%.
Bei dem vorgestellten Ansatz soll der Auftreffpunkt des Pfeils durch die Kreuzkorrelation von Audio-Signalen bestimmt werden. Das Auftreffen des Pfeils erzeugt ein charakteristisches Geräusch, welches von mehreren Mikrofonen in bestimmter Anordnung um die Dartscheibe herum in elektrische Signale umgewandelt wird. Mithilfe der Schallgeschwindigkeit und den Zeitdifferenzen, welche die Schallwelle zu den einzelnen Mikrofonen benötigt soll dann der Auftreffpunkt berechnet werden.
This paper presents an approach for implementing an automated hit detection and score calculation system for a steel dartboard using a standard webcam. First, the rectilinear field separations of the dartboard are described mathematically by means of line slopes and are than stored. These slopes serve as a basis for later score calculation. In addition, thrown darts have to be detected and the pixel at which the dart cuts the dartboard has to be determined. When this information is known, a comparison is made using the line slopes, allowing the field number of the hit to be detected. The decision for single, double or triple hit is made by evaluating the defined colors on the dartboard. All these functions are then packaged in a Matlab GUI.
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data correctly into tracks. In this work, we present a self-supervised multiple object tracking approach based on visual features and minimum cost lifted multicuts. Our method is based on straight-forward spatio-temporal cues that can be extracted from neighboring frames in an image sequences without supervision. Clustering based on these cues enables us to learn the required appearance invariances for the tracking task at hand and train an AutoEncoder to generate suitable latent representations. Thus, the resulting latent representations can serve as robust appearance cues for tracking even over large temporal distances where no reliable spatio-temporal features can be extracted. We show that, despite being trained without using the provided annotations, our model provides competitive results on the challenging MOT Benchmark for pedestrian tracking.
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.
This paper describes the concept and some results of the project "Menschen Lernen Maschinelles Lernen" (Humans Learn Machine Learning, ML2) of the University of Applied Sciences Offenburg. It brings together students ofdifferent courses of study and practitioners from companies on the subject of Machine Learning. A mixture of blended learning and practical projects ensures atight coupling of machine learning theory and application. The paper details thephases of ML2 and mentions two successful example projects.
The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
Due to the rapidly increasing storage consumption worldwide, as well as the expectation of continuous availability of information, the complexity of administration in today’s data centers is growing permanently. Integrated techniques for monitoring hard disks can increase the reliability of storage systems. However, these techniques often lack intelligent data analysis to perform predictive maintenance. To solve this problem, machine learning algorithms can be used to detect potential failures in advance and prevent them. In this paper, an unsupervised model for predicting hard disk failures based on Isolation Forest is proposed. Consequently, a method is presented that can deal with the highly imbalanced datasets, as the experiment on the Backblaze benchmark dataset demonstrates.
The recent successes and wide spread application of compute intensive machine learning and data analytics methods have been boosting the usage of the Python programming language on HPC systems. While Python provides many advantages for the users, it has not been designed with a focus on multiuser environments or parallel programming - making it quite challenging to maintain stable and secure Python workflows on a HPC system. In this paper, we analyze the key problems induced by the usage of Python on HPC clusters and sketch appropriate workarounds for efficiently maintaining multi-user Python software environments, securing and restricting resources of Python jobs and containing Python processes, while focusing on Deep Learning applications running on GPU clusters.
Diffracted waves carry high resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. Because of the low signal-to-noise ratio of diffracted waves, it is challenging to preserve them during processing and to identify them in the final data. It is, therefore, a traditional approach to pick manually the diffractions. However, such task is tedious and often prohibitive, thus, current attention is given to domain adaptation. Those methods aim to transfer knowledge from a labeled domain to train the model, and then infer on the real unlabeled data. In this regard, it is common practice to create a synthetic labeled training dataset, followed by testing on unlabeled real data. Unfortunately, such procedure may fail due to the existing gap between the synthetic and the real distribution since quite often synthetic data oversimplifies the problem, and consequently the transfer learning becomes a hard and non-trivial procedure. Furthermore, deep neural networks are characterized by their high sensitivity towards cross-domain distribution shift. In this work, we present deep learning model that builds a bridge between both distributions creating a semi-synthetic datatset that fills in the gap between synthetic and real domains. More specifically, our proposal is a feed-forward, fully convolutional neural network for imageto-image translation that allows to insert synthetic diffractions while preserving the original reflection signal. A series of experiments validate that our approach produces convincing seismic data containing the desired synthetic diffractions.
Analysis of Amplitude and Phase Errors in Digital-Beamforming Radars for Automotive Applications
(2020)
Fundamentally, automotive radar sensors with Digital-Beamforming (DBF) use several transmitter and receiver antennas to measure the direction of the target. However, hardware imperfections, tolerances in the feeding lines of the antennas, coupling effects as well as temperature changes and ageing will cause amplitude and phase errors. These errors can lead to misinterpretation of the data and result in hazardous actions of the autonomous system. First, the impact of amplitude and phase errors on angular estimation is discussed and analyzed by simulations. The results are compared with the measured errors of a real radar sensor. Further, a calibration method is implemented and evaluated by measurements.
Als Einstieg in den Diskurs über zivile Netzwerktechnologien, mobile Geräte, Onlinedienste und die Frage, wie sich die „Kirche der Zukunft“ (zumindest aus medienwissenschaftlicher Sicht) positionieren kann, dienen drei Zitate. Die Gegenüberstellung der darin vertretenen Positionen soll den Nutzen und die Folgen der zunehmend vollständigen Durchdringung (fast) aller Lebensbereiche mit Digitaltechnik für den Einzelnen wie für die Gesellschaft aufzeigen.
During the day-to-day exploitation of localization systems in mines, the technical staff tends to incorrectly rearrange radio equipment: positions of devices may not be accurately marked on a map or their positions may not correspond to the truth. This situation may lead to positioning inaccuracies and errors in the operation of the localization system.This paper presents two Bayesian algorithms for the automatic corrections of positions of the equipment on the map using trajectories restored by the inertial measurement units mounted to mobile objects, like pedestrians and vehicles. As a basis, a predefined map of the mine represented as undirected weighted graph was used as input. The algorithms were implemented using the Simultaneous Localization and Mapping (SLAM) approach.The results prove that both methods are capable to detect misplacement of access points and to provide corresponding corrections. The discrete Bayesian filter outperforms the unscented Kalman filter, which, however, requires more computational power.
Radio frequency identification (RFID) antennas are popular for high frequency (HF) RFID, energy transfer and near field communication (NFC) applications. Particularly for wireless measurement systems the RFID/NFC technology is a good option to implement a wireless communication interface. In this context, the design of corresponding reader and transmitter antennas plays a major role for achieving suitable transmission quality. This work proves the feasibility of the rapid prototyping of a RFID/NFC antenna, which is used for the wireless communication and energy harvesting at the required frequency of 13.56 MHz. A novel and low-cost direct ink writing (DIW) technology utilizing highly viscous silver nanoparticle ink is used for this process. This paper describes the development and analysis of low-cost printed flexible RFID/NFC antennas on cost-effective substrates for a microelectronic vital parameter measurement system. Furthermore, we compare the measured technical parameters with existing copper-based counterparts on a FR4 substrate.
Smart Home or Smart Building applications are a growing market. An increasing challenge is to design energy efficient Smart Home applications to achieve sustainable and green homes. Using the example of the development of an Indoor Smart Gardening system with wireless monitoring and automated watering this paper is discussing in particular the design issue of energy autonomous working sensors and actuators for home automation. Most important part of the presented Smart Gardening system is a 3D printed smart flower pot for single plants. The smart flower pot has integrated a water reservoir for automated plant irrigation and an electronic for monitoring important plant parameters and the water level of the water reservoir. Energy harvesting with solar cells enables energy autonomous working of the flower pot. A low-power wireless interface also integrated in the flowerpot and an external gateway based on a Raspberry Pi 3 enables wireless networking of multiple of those flower pots. The gateway is used for evaluating the plant parameters and as a user interface. Particularly the architecture of the energy autonomous wireless flower pot will be considered, because fully energy autonomous sensors and actuators for home automation could not be implemented without special concepts for the energy supply and the overall electronic.
Smart Home-/Smart-Building-Anwendungen sind ein stetig wachsender Markt. Smart Gardening ist ein Beispiel dafür, Nutzern mehr Komfort und eine bessere Lebensqualität zu Hause oder in Bürogebäuden zu ermöglichen. Im Rahmen dieses Beitrags wird die Entwicklung eines Indoor-Smart-Gardening-Systems mit dem Fokus auf energieautarkes Arbeiten vorgestellt. Herzstück des Systems ist ein 3D-gedruckter Blumentopf für einzelne Pflanzen mit integrierter Elektronik zum Monitoring der wichtigsten Pflanzenparameter und einem integrierten Wasserreservoir mit Tauchpumpe für das automatisierte Bewässern der Pflanze. Energy Harvesting per Solarzellen ermöglicht ein energieautarkes Arbeiten des Blumentopfes. Eine selbstentwickelte Low-Power-Funkschnittstelle im Blumentopf und ein externes Gateway ermöglichen die drahtlose Vernetzung mehrerer Pflanzen. Das Gateway dient zur Auswertung der Pflanzenparameter, der Ansteuerung der im Netzwerk vorhandenen Blumentöpfe und als Benutzerinterface.
Amongst all the major hazard aspects for the health of people in big conglomerates is the increase of the particulate matter concentration. Traditional systems for particulate matter (PM) monitoring have a great number of drawbacks but the main issues are economical and are related to the installation costs and never ending periodical maintenance expenses. After all there are installations of such systems but their number is limited and having in mind the growth of population, cities and industry areas, there is even a bigger need for more information on air quality because PM changes non-linearly, has a wide range and different sources. In this paper, we propose an approach, based on low-cost sensor nodes, for real-time measuring and obtaining information about the PM concentration. The adoption of that approach allows for a detailed study of the intensities of pollution and its sources. The system power supply is powered by a PV module. The power supply unit is designed using a model-based design that is a new approach to prototyping power-operated electronic devices with guaranteed performance.
Kleinstlebewesen vorgestellt, das Vitalparameter erfasst und diese in einem FRAM-Speicher bis zum Auslesen abspeichert. Durch eine drahtlose RFID-/NFC-Ausleseschnittstelle kann die erfasste Körpertemperatur und der Puls der letzten Wochen ausgelesen werden. Alle Einstellungen des Messsystems können durch einen geeigneten RFID-Reader für Laptops oder durch Smartphones über die NFC-Schnittstelle geändert werden. Das vollständige Aufladen des nur 3 g leichten und 15 mm x 25 mm großen Messsystems erfolgt durch eine selbstgedruckte RFID-Reader-Antenne in Verbindung mit einem RFID-Reader und benötigt hierzu weniger als 21 Stunden. Bei vollständig aufgeladenem Energiespeicher ist ein Betrieb von 47 Tagen möglich. Dies wird durch ein speziell für das Messsystem konzipiertes Lade- und Powermanagement erreicht. Neben der Auswahl von energiesparenden Komponenten für die Hardware und deren bestmöglichen Nutzung, wurde die Software so optimiert, dass das Programm schnell und stromsparend abgearbeitet wird. Die Erweiterbarkeit und Anpassung wird durch das modulare Konzept auch in anderen Bereichen gewährleistet.
Investigation of the Angle Dependency of Self-Calibration in Multiple-Input-Multiple-Output Radars
(2021)
Multiple-Input-Multiple-Output (MIMO) is a key technology in improving the angular resolution (spatial resolution) of radars. In MIMO radars the amplitude and phase errors in antenna elements lead to increase in the sidelobe level and a misalignment of the mainlobe. As the result the performance of the antenna channels will be affected. Firstly, this paper presents analysis of effect of the amplitude and phase errors on angular spectrum using Monte-Carlo simulations. Then, the results are compared with performed measurements. Finally, the error correction with a self-calibration method is proposed and its angle dependency is evaluated. It is shown that the values of the errors change with an incident angle, which leads to a required angle-dependent calibration.
Apache Hadoop is a well-known open-source framework for storing and processing huge amounts of data. This paper shows the usage of the framework within a project of the university in cooperation with a semiconductor company. The goal of this project was to supplement the existing data landscape by the facilities of storing and analyzing the data on a new Apache Hadoop based platform.
Hintergrund: Die Pulmonalvenenisolation (PVI) mit Hilfe von Kryoballonkathetern ist eine anerkannte Methode zur Behandlung von Vorhofflimmern (AF). Diese Methode bietet eine kürzere Behandlungsdauer als die klassische Therapie durch die Hochfrequenzablation (HF). Ziel dieser Studie war es, verschiedene Kryoballonkatheter, HF-Katheter und Ösophaguskatheter in ein Herzrhythmusmodell zu integrieren und mittels statischer und dynamischer Simulation elektrische und thermische Felder bei PVI unter Vorhofflimmern zu untersuchen.
Methodik: Die Modellierung und Simulation erfolgte mit der elektromagnetischen und thermischen Simulationssoftware CST (CST Darmstadt). Zwei Kryoballons, ein HF-Ablationskatheter und ein Ösophaguskatheter wurden auf der Grundlage der technischen Handbücher der Hersteller Medtronic und Osypka modelliert. Der 23 mm Kryoballon und ein kreisförmiger Mappingkatheter wurden in das Offenburger Herzrhythmusmodell integriert, insbesondere die left inferior pulmonary vein (LIPV) zur Simulation der thermischen Feldausbreitung während einer PVI. Die Simulation einer PVI mit HF-Energie wurde mit dem integrierten HF-Ablationskatheter in der Nähe der LIPV durchgeführt. Der im Herzrhythmusmodell platzierte TO8 Ösophaguskatheter ermöglichte die Ableitung linksatrialer elektrischer Felder bei AF und die Analyse thermischer Felder während PVI.
Ergebnisse: Elektrische Felder konnten bei Sinusrhythmus und AF mit einem AF-Fokus in der LIVP statisch und dynamisch im Herzen und Ösophagus simuliert werden. Bei einer simulierten 20 Sekunden Applikation eines Kryoballon-Katheters bei -50°C wurde eine Temperatur von -24°C in einer Tiefe von 0,5 mm im Myokard gemessen. In einer Tiefe von 1 mm betrug die Temperatur -3°C, bei 2 mm Tiefe 18°C und bei 3 mm Tiefe 29°C. Unter der 15 sekündigen Anwendung eines HF-Katheters mit einer 8-mm-Elektrode und einer Leistung von 5 W bei 420 kHz betrug die Temperatur an der Spitze der Elektrode 110°C. In einer Tiefe von 0,5 mm im Myokard betrug die Temperatur 75°C, in einer Tiefe von 1 mm 58°C, in einer Tiefe von 2 mm 45°C und in einer Tiefe von 3 mm 38°C. Im Ösophagus konnte bei den meisten Simulationen eine konstante Temperatur von 37°C gemessen und die Gefahr einer Ösophagus-Fistel ausgeschlossen werden. Bei Kryoablation der LIPV wurde eine Abkühlung des Ösophagus auf 30°C gemessen.
Schlussfolgerungen: Die Herzrhythmussimulation elektrischer und thermaler Felder ermöglichen mit Anwendung unterschiedlicher Herzkatheter eine statische und dynamische Simulation von PVI durch Kryoablation, HF-Ablation und Temperaturanalyse im Ösophagus. Unter Einbeziehung von MRT- oder CT-Daten können elektrische und thermale Simulationen möglicherweise zur Optimierung von PVIs genutzt werden.
Background: Pulmonary vein isolation (PVI) using cryoballoon catheters are a recognized method for the treatment of atrial fibrillation (AF). This method offers shorter treatment duration in contrast to the classical therapy with high-frequency (HF) ablation.
Purpose: The aim of this study was to integrate different cryoballoon catheters and a HF catheter into a heart rhythm model and to compare them by means of static and dynamic electromagnetic and thermal simulation in use under AF.
Methods: The cryoballoon catheters from Medtronic and the HF ablation catheter from Osypka were modelled virtually with the aid of manufacturer specifications and the CST (Computer Simulation Technology, Darmstadt) simulation program. The cryoballoon catheter was located in the lower left pulmonary vein of the virtual heart rhythm model for the realization of pulmonary vein isolation (PVI) by cryoenergy. The simulated temperature at the balloon surface was -50°C during the simulation.
Results: During a simulated 20 second application of a cryoballoon catheter at -50°C, a temperature of -24°C was measured at a depth of 0.5 mm in the myocardium. At a depth of 1 mm the temperature was -3°C, at 2 mm depth 18°C and at 3 mm depth 29°C. Under the 15 second application of a RF catheter with a 8 mm electrode and a power of 5 W at 420 kHz, the temperature at the tip of the electrode was 110°C. At a depth of 0.5 mm in the myocardium, the temperature was 75°C, at a depth of 1 mm 58°C, at 2 mm depth 45°C and at 3 mm depth 38°C.
Conclusions: The simulation of temperature profiles during the virtual application of several catheter models in the heart rhythm model allows the static and dynamic simulation of PVI by cryoballoon ablation and RF ablation. The three-dimensional simulation can be used to improve ablation applications by creating a model in personalized cardiac rhythm therapy from MRI or CT data of a heart and finding a favourable position for ablation of AF.
Enabling ultra-low latency is one of the major drivers for the development of future cellular networks to support delay sensitive applications including factory automation, autonomous vehicles and tactile internet. Narrowband Internet of Things (NB-IoT) is a 3 rd Generation Partnership Project (3GPP) Release 13 standardized cellular network currently optimized for massive Machine Type Communication (mMTC). To reduce the latency in cellular networks, 3GPP has proposed some latency reduction techniques that include Semi Persistent Scheduling (SPS) and short Transmission Time Interval (sTTI). In this paper, we investigate the potential of adopting both techniques in NB-IoT networks and provide a comprehensive performance evaluation. We firstly analyze these techniques and then implement them in an open-source network simulator (NS3). Simulations are performed with a focus on Cat-NB1 User Equipment (UE) category to evaluate the uplink user-plane latency. Our results show that SPS and sTTI have the potential to greatly reduce the latency in NB-IoT systems. We believe that both techniques can be integrated into NB-IoT systems to position NB-IoT as a preferred technology for low data rate Ultra-Reliable Low-Latency Communication (URLLC) applications before 5G has been fully rolled out.