Refine
Year of publication
Document Type
- Article (reviewed) (423) (remove)
Has Fulltext
- no (423) (remove)
Keywords
- Dünnschichtchromatographie (16)
- Adsorption (11)
- Metallorganisches Netzwerk (9)
- Ermüdung (8)
- Lithiumbatterie (8)
- Energieversorgung (6)
- Intelligentes Stromnetz (6)
- Simulation (6)
- Brennstoffzelle (5)
- Haustechnik (5)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (166)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (135)
- INES - Institut für Energiesystemtechnik (65)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (51)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (49)
- Fakultät Medien und Informationswesen (M+I) (14)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (7)
- IfTI - Institute for Trade and Innovation (5)
- IUAS - Institute for Unmanned Aerial Systems (4)
- POIM - Peter Osypka Institute of Medical Engineering (ab 21.10.2020) (4)
Oxide semiconductors have the potential to increase the performance of inkjet printed microelectronic devices such as field-effect transistors (FETs), due to their high electron mobilities. Typical metal oxides are n-type semiconductors, while p-type oxides, although realizable, exhibit lower carriermobilities. Therefore, the circuit design based on oxide semiconductors is mostly in n-type logic only. Here we present an inkjet printed pn-diode based on p- and n-type oxide semiconductors.Copper oxide or nickel oxide is used as p-typesemiconductor whereas n-typesemiconductor is realized with indium oxide. Themeasurements show that the pn-diodes operate in the voltage window typical for printed electronics and the emission coefficient is 1.505 and 2.199 for the copper oxide based and nickel oxidebased pn-diode, respectively.Furthermore, a pn-diode model is developed and integrable into a circuit simulator.
In the domain of printed electronics (PE), field-effect transistors (FETs) with an oxide semiconductor channel are very promising. In particular, the use of high gate-capacitance of the composite solid polymer electrolytes (CSPEs) as a gate-insulator ensures extremely low voltage requirements. Besides high gate capacitance, such CSPEs are proven to be easily printable, stable in air over wide temperature ranges, and possess high ion conductivity. These CSPEs can be sensitive to moisture, especially for high surface-to-volume ratio printed thin films. In this paper, we provide a comprehensive experimental study on the effect of humidity on CSPE-gated single transistors. At the circuit level, the performance of ring oscillators (ROs) has been compared for various humidity conditions. The experimental results of the electrolyte-gated FETs (EGFETs) demonstrate rather comparable currents between 30%-90% humidity levels. However, the shifted transistor parameters lead to a significant performance change of the RO frequency behavior. The study in this paper shows the need of an impermeable encapsulation for the CSPE-gated FETs to ensure identical performance at all humidity conditions.
Printed electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed. When integrated into ring oscillator circuits a digital performance ranging from 250 Hz at 1 V up to 1 kHz is achieved. Sequential circuits such as memory cells are also demonstrated. More complex circuits are feasible but remain challenging also because of the high variability of the printed devices. However, the device inherent variability can be even exploited in security circuits such as physically unclonable functions (PUFs), which output a reliable and unique, device specific, digital response signal. As an overall advantage of the technology all the presented circuits can operate at very low supply voltages (0.6 V), which is crucial for low-power printed electronics applications.
This article presents the development, parameterization, and experimental validation of a pseudo-three-dimensional (P3D) multiphysics model of a 350 mAh high-power lithium-ion pouch cell with graphite anode and lithium cobalt oxide/lithium nickel cobalt aluminum oxide (LCO/NCA) blend cathode. The model describes transport processes on three different scales: Heat transport on the macroscopic scale (cell), mass and charge transport on the mesoscopic scale (electrode pair), and mass transport on the microscopic scale (active material particles). A generalized description of electrochemistry in blend electrodes is developed, using the open-source software Cantera for calculating species source terms. Very good agreement of model predictions with galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and surface temperature measurements is observed over a wide range of operating conditions (0.05C to 10C charge and discharge, 5°C to 35°C). The behavior of internal states (concentrations, potentials, temperatures) is discussed. The blend materials show a complex behavior with both intra-particle and inter-particle non-equilibria during cycling.
Nonlinearity can give rise to intermodulation distortions in surface acoustic wave (SAW) devices operating at high input power levels. To understand such undesired effects, a finite element method (FEM) simulation model in combination with a perturbation theory is applied to find out the role of different materials and higher order nonlinear tensor data for the nonlinearities in such acoustic devices. At high power, the SAW devices containing metal, piezoelectric substrate, and temperature compensating (TC) layers are subject to complicated geometrical, material, and other nonlinearities. In this paper, third-order nonlinearities in TC-SAW devices are investigated. The materials used are LiNbO 3 -rot128YX as the substrate and copper electrodes covered with a SiO 2 film as the TC layer. An effective nonlinearity constant for a given system is determined by comparison of nonlinear P-matrix simulations to third-order intermodulation measurements of test filters in a first step. By employing these constants from different systems, i.e., different metallization ratios, in nonlinear periodic P-matrix simulations, a direct comparison to nonlinear periodic FEM-simulations yields scaling factors for the materials used. Thus, the contribution of the different materials to the nonlinear behavior of TC-SAW devices is obtained and the role of metal electrodes, substrate, and TC film are discussed in detail.
Design of next-generation cdma using orthogonal complementary codes and offset stacked spreading
(2007)
This article presents an innovative code-division multiple access system architecture that is based on orthogonal complementary spreading codes and time-frequency domain spreading. The architecture has several advantages compared to conventional CDMA systems. Specifically, it offers multiple-access-interference-free operation in AWGN channels, reduces co-channel interference significantly, and has the potential for higher capacity and spectral efficiency than conventional CDMA systems. This is accomplished by using an "offset stacked" spreading modulation technique followed by quadrature amplitude modulation, which optimizes performance in a fading environment. This new spreading modulation scheme also simplifies the rate matching algorithms relevant for multimedia services and IP-based applications.
We present a novel scheme for Slotted ALOHA random access systems that combines physical-layer network coding (PLNC) with multiuser detection (MUD). The PLNC and MUD are applied jointly at the physical layer to be able to extract any linear combination of messages experiencing a collision within a slot. The set of combinations extracted from a whole frame is then processed by the receiver to recover the original packets. A simple precoding stage at the transmitting terminals allows the receiver to further decrease the packet loss rate. We present results for the decoding at the physical layer as well as several performance measures at frame level, namely, throughput, packet loss rate, and energy efficiency. The results we present are promising and suggest that a cross-layer approach leveraging on the joint use of PLNC and MUD can significantly improve the performance of random access systems in the presence of slow fading.
The current methods used to assess the energy performance of ventilation devices do not consider all the aspects necessary for a comprehensive evaluation of decentralised ventilation concepts and can only be partially adapted to their needs. In order to improve the energy evaluation and to ensure the comparability of different systems, a calorimetric method was developed and implemented in test facilities for the evaluation of two decentralised devices: one equipped with a recuperative counter flow heat exchanger and one with a regenerative heat exchanger. This method, based on direct measurements of the heating load in an insulated test room, includes the effect of the electrical consumption of the fans on the energy performance of the ventilation devices. The calorimetric evaluation method was extended to a seasonal evaluation on the basis of a heating-degree-day method implemented for a warm, a cool and a moderate location in Europe: Athens, Strasbourg and Copenhagen. All the results are above 50% efficiency for both devices, even in Athens where the use of heat recovery ventilation is not usual.
Ozon-Querempfindlichkeit bei der Immissionsmessung von schwebstaubakkumuliertem Benzo[a]pyren
(2002)
Für die Beschreibung der Belastung der Luft mit polycyclischen aromatischen Kohlenwasserstoffen (PAK) wird vorwiegend die Konzentration eines Vertreters, das auf Schwebstaub akkumulierte Benzo[a]pyren (BaP), analysiert. Hierbei stellt Benzo[a]pyren die Leit komponen te für die Stoffklasse der PAK dar. Auf europäischer Ebene ist vorgesehen, für diesen Luftinhaltsstoff einen Grenzwert als Jahresmittelwert festzulegen. Deshalb wird bei bei der Normungsbehörde CEN zurzeit eine Europäische Norm für diesen Stoff erarbeitet. Aus der Literatur ist bekannt, dass für Benzo[a]pyren eine Querempfindlichkeit gegen Ozon und NO2 besteht. Im Zuge der Neuentwicklung eines Probenahmekopfs (PNK) für PAK-Immissionsmessungen, der durch den Einsatz eines Ozon- Scrubbers eine ozonfreie Immissionsmessung der Benzo[a]pyren-Konzentration ermög licht, wurde in dieser Arbeit die prinzipielle Einsetzbarkeit dieses Probe nahmekopfs geprüft. Zu diesem Zweck wurden Voruntersuchungen und Feldversuche durchgeführt, mit dem Ziel, Kenntnisse über die Ozon-Querempfindlichkeit zu erhalten. Um die Ozon-Querempfindlichkeit bei der Benzo[a]pyren-Bestimmung zu studieren, wurde Ozon in den Ansaugbereich der Probenahme dosiert. Als Ergebnis der Untersuchungen kann festgehalten werden, dass für die Benzo[a]pyren-Immissionsmessung eine deutliche Ozon-Querempfindlichkeit besteht, die unter Einsatz des neuen Ozon- Scrubbers vermieden werden kann.
Member Lens
(2013)
Im Rahmen des Kontinentalen Tiefbohrprogramms der Bundesrepublik Deutschland (KTB) wurde im September 1987 in der Oberpfalz bei Windischeschenbach mit der Vorbohrung begonnen, die im Frühjahr des letzten Jahres bei einer Tiefe von 4000m erfolgreich abgeschlossen wurde. Mit der in diesem Jahr beginnenden Hauptbohrung will man 10 bis 12km tief in das Erdinnere vorstoßen. Nicht nur anhand von Gesteins- und Flüssigkeitsproben, sondern auch mit Hilfe von Meßsonden werden umfangreiche geophysikalische Daten gewonnen. Der Aufsatz beschreibt, wie die magnetische Suszeptibilität von Gesteinen bis ca. 300°C Umgebungstemperatur und einem Druck von 2kbar gemessen wird und die Daten über ein 14km langes Bohrlochkabel von der Sonde zum Steuerrechner übertragen werden.
The structure of the separation bubble that appears in the secondary meridional flow between two coaxially rotating spheres at low and finite Reynolds number (Re) is considered. The low Re analytical study was motivated by recognizing some errors in the analytical work on this problem by Arunachalam and Majhi (1987, Q. Jl Mech. Appl. Math., 40, 47) whilst the finite Re experimental study was motivated by the desire to observe the separation bubble in the laboratory. Though the finite Re experiments were performed in a confined apparatus, they exhibit the qualitative features of the low Re theoretical predictions for the axisymmetric separation bubble that encloses two toroidal vortices symmetrically disposed above and below the mid‐plane of sphere separation, but strong effects of confinement are apparent. The flows observed include (i) a wall‐attached bubble symmetric about the mid‐plane at low Re, (ii) symmetric free‐standing bubbles at moderate Re, and (iii) an asymmetric bubble with flow separating from one sphere and attaching to the support shaft between the spheres at sufficiently high Re.
In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal–organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1–IFP-6 (IFP = Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Tòth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Tòth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity αCO2/CH4 has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric–chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of αCO2/CH4 around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity αCO2/CH4 = 4–6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application.
On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport
(2018)
Numerous technologies, such as batteries and fuel cells, depend on electrochemical kinetics. In some cases, the responsible electrochemistry and charged-species transport is complex. However, to date, there are essentially no general-purpose modeling capabilities that facilitate the incorporation of thermodynamic, kinetic, and transport complexities into the simulation of electrochemical processes. A vast majority of the modeling literature uses only a few (often only one) global charge-transfer reactions, with the rates expressed using Butler–Volmer approximations. The objective of the present paper is to identify common aspects of electrochemistry, seeking a foundational basis for designing and implementing software with general applicability across a wide range of materials sets and applications. The development of new technologies should be accelerated and improved by enabling the incorporation of electrochemical complexity (e.g., multi-step, elementary charge-transfer reactions and as well as supporting ionic and electronic transport) into the analysis and interpretation of scientific results. The spirit of the approach is analogous to the role that Chemkin has played in homogeneous chemistry modeling, especially combustion. The Cantera software, which already has some electrochemistry capabilities, forms the foundation for future capabilities expansion.
Private households constitute a considerable share of Europe's electricity consumption. The current electricity distribution system treats them as effectively passive individual units. In the future, however, users of the electricity grid will be involved more actively in the grid operation and can become part of intelligent networked collaborations. They can then contribute the demand and supply flexibility that they dispose of and, as a result, help to better integrate renewable energy in-feed into the distribution grids.
Experimental and theoretical investigations of the time of equalization of the concentration of an impurity in a rectangular flow‐type chamber have been carried out. It has been shown that the process of equalization of the concentration with time is exponential in character. The characteristic equalization time has been computed using the theory of turbulent diffusion. Theoretical results describe experimental regularities with an accuracy of about 10%. The value of the coefficient of turbulent diffusion for different configurations of flows in the chamber has been obtained from a comparison of experimental and calculated results.
The Humboldt digital library (HDL) represents an innovative system to access the works and legacy of Alexander von Humboldt in a digital form on the Internet (www.avhumboldt.net). It contributes to the key question about how to present interconnected data in an appropriate form using information technologies. The HDL has been created as a dynamic digital library with the capability of connecting multilingual and multimedia data from diverse online archives. Humboldt’s volumes have become available, but beyond that any relevant information related to the observations of Humboldt, even outside the works can become immediately accessible. This makes it possible to recognize natural changes and compare Humboldt’s descriptions with recent situations. The technology we have developed addresses the issues of sustainability and makes it possible to detect changes in the environment since the time of Humboldt’s observations.
In rural low voltage grid networks, the use of battery in the households with a grid connected Photovoltaic (PV) system is a popular solution to shave the peak PV feed-in to the grid. For a single electricity price scenario, the existing forecast based control approaches together with a decision based control layer uses weather and load forecast data for the on–off schedule of the battery operation. These approaches do bring cost benefit from the battery usage. In this paper, the focus is to develop a Model Predictive Control (MPC) to maximize the use of the battery and shave the peaks in the PV feed-in and the load demand. The solution of the MPC allows to keep the PV feed-in and the grid consumption profile as low and as smooth as possible. The paper presents the mathematical formulation of the optimal control problem along with the cost benefit analysis . The MPC implementation scheme in the laboratory and experiment results have also been presented. The results show that the MPC is able to track the deviation in the weather forecast and operate the battery by solving the optimal control problem to handle this deviation.
Die Analyse von Engpässen im Güterverkehr ist eine wichtige Voraussetzung, um zukünftige Heraus-forderungen der Infrastrukturplanung und Logistik bewältigen zu können. Im Rahmen des EU-Projekts Code24 sollen Strategien für die Behandlung zukünftiger Herausforderungen im Schienengüterverkehr im wichtigsten europäischen Güterverkehrskorridor Rotterdam-Genua entwickelt werden. Hierfür sind Infor-mationen über Zugzahlen und die Kapazitätsauslastung auf einzelnen Streckenabschnitten eine wichtige Voraussetzung.
The high frequency (HF) catheter ablation is the gold standard for the therapy of many cardiac tachyarrhythmias, such as atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) or atrial flutter (AFL). The aim of the study was to simulate the HF ablation of AVNRT, AVRT, AFL and its heat propagation in reference to the supplied power with different electrode material and electrode size. The modeling and simulation were performed with the thermal and electromagnetic simulation software CST® (Computer Simulation Technology, Darmstadt). The modeling and simulation were carried out using ablation catheters with 4 mm tip electrode and 8 mm tip electrode with different electrode materials. Both electrode types were made of platinum and gold respectively. For the measurement of the heat propagation in the heart tissue, the catheters were integrated in the Offenburg heart rhythm model. The HF ablation procedures were performed with the 4 mm platinum tip electrode, with an application duration of 45 seconds and a power output of 40 watts. The HF ablation of the atrioventricular node slow pathway produced a maximum temperature of 66.33 °C. The Kent bundle HF ablation in the left atrium achieved a maximum temperature of 67.14 °C. The HF ablation of the right atrial isthmus resulted 65.96 °C. The 8 mm distal platinum tip electrode and a power output of 60 watts reached 72.85 °C. The 8 mm distal gold tip electrode and a power output of 60 watt reached 64.66 °C, due to the improved thermal conductivity of gold. Virtual heart and ablation electrode models allow the static and dynamic simulation of HF ablation with different electrode material and electrode size. The 3D simulation of the temperature profile may be used to optimize the AVNRT, AVRT and AFL HF ablation.
We present a planar chromatographic separation method for the compounds caffeine, artemisinin, and equol, separated on high-performance thin-layer chromatography (HPTLC) silica gel plates. As solvents for separation, methyl t-butyl ether and cyclohexane (1:1, V/V) have been used for equol, cyclohexane and ethyl acetate (7:3, V/V) for artemisinin, and ethyl acetate and acetone (7:3, V/V) for caffeine. After separation, the plate was scanned with a very specific time of flight-direct analysis in real time-mass spectrometry (TOF-DART-MS) system using the (M + 1)+ signals of equol, artemisinin, and caffeine. The (M + 1) peak of artemisinin at 283.13 m/z is clearly detectable, which is the proof that DART-MS is applicable for the quantitative determination of rather instable molecules. The planar set-up of DART source, HPTLC plate and detector inlet in a line showed higher sensitivities compared to desorption at an angle. The optimal detector voltage increases with the molar mass of the analyte, thus an individual determination of optimal detector voltage setting for the different analyte is recommended to achieve the best possible measurement conditions. In conclusion, DART-MS detection in combination with an HPTLC separation allows very specific quantification of all three compounds.
Background: R-wave synchronised atrial pacing is an effective temporary pacing
therapy in infants with postoperative junctional ectopic tachycardia. In the technique
currently used, adverse short or long intervals between atrial pacing and ventricular
sensing (AP–VS) may be observed during routine clinical practice.
Objectives: The aim of the study was to analyse outcomes of R-wave synchronised
atrial pacing and the relationship between maximum tracking rates and AP–VS
intervals.
Methods: Calculated AP–VS intervals were compared with those predicted by experienced
pediatric cardiologist.
Results: A maximum tracking rate (MTR) set 10 bpm higher than the heart rate (HR)
may result in undesirable short AP–VS intervals (minimum 83 ms). A MTR set 20 bpm
above the HR is the hemodynamically better choice (minimum 96 ms). Effects of either
setting on the AP–VS interval could not be predicted by experienced observers. In our
newly proposed technique the AP–VS interval approaches 95 ms for HR > 210 bpm
and 130 ms for HR < 130 bpm. The progression is linear and decreases strictly
(− 0.4 ms/bpm) between the two extreme levels.
Conclusions: Adjusting the AP–VS interval in the currently used technique is complex
and may imply unfavorable pacemaker settings. A new pacemaker design is advisable
to allow direct control of the AP–VS interval.
Printed electronics (PE) circuits have several advantages over silicon counterparts for the applications where mechanical flexibility, extremely low-cost, large area, and custom fabrication are required. The custom (personalized) fabrication is a key feature of this technology, enabling customization per application, even in small quantities due to low-cost printing compared with lithography. However, the personalized and on-demand fabrication, the non-standard circuit design, and the limited number of printing layers with larger geometries compared with traditional silicon chip manufacturing open doors for new and unique reverse engineering (RE) schemes for this technology. In this paper, we present a robust RE methodology based on supervised machine learning, starting from image acquisition all the way to netlist extraction. The results show that the proposed RE methodology can reverse engineer the PE circuits with very limited manual effort and is robust against non-standard circuit design, customized layouts, and high variations resulting from the inherent properties of PE manufacturing processes.
Printed electronics (PE) is a fast-growing field with promising applications in wearables, smart sensors, and smart cards, since it provides mechanical flexibility, and low-cost, on-demand, and customizable fabrication. To secure the operation of these applications, true random number generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of the PE circuits results in high intrinsic variations due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this article, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field-effect transistors (EGFETs). We also propose a printed resistor tuning flow for the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behavior. The simulation results show that the overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream of the tuned TRNGs passes the National Institute of Standards and Technology - Statistical Test Suite. For the proof of concept, the proposed TRNG circuit was fabricated and tuned. The characterization results of the tuned TRNGs prove that the TRNGs generate random bitstreams at the supply voltage of down to 0.5 V. Hence, the proposed TRNG design is suitable to secure low-power applications in this domain.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Advances in printed electronics (PE) enables new applications, particularly in ultra-low-cost domains. However, achieving high-throughput printing processes and manufacturing yield is one of the major challenges in the large-scale integration of PE technology. In this article, we present a programmable printed circuit based on an efficient printed lookup table (pLUT) to address these challenges by combining the advantages of the high-throughput advanced printing and maskless point-of-use final configuration printing. We propose a novel pLUT design which is more efficient in PE realization compared to existing LUT designs. The proposed pLUT design is simulated, fabricated, and programmed as different logic functions with inkjet printed conductive ink to prove that it can realize digital circuit functionality with the use of programmability features. The measurements show that the fabricated LUT design is operable at 1 V.
Economic growth is usually driven by improvements in productivity, economic efficiency, trade and innovation. Increasing efficiency means to produce larger output using the same amount of factors for production such as raw materials, labour, and capital. However, regardless of the driver, growth is often investment-hungry and it is not rare to find an economy with potential for growth but lacking locally available investment. In this scenario, Foreign Direct Investment (FDI) can fill the gap between investment needed to promote economic growth and locally available investments.
Cellular phone antennas are generally designed to have radiation patterns that are as omnidirectional as possible. Omnidirectional antennas allow a phone’s radio to work well for many orientations of the phone with respect to the cellular base station. Recent studies, however, are generating uncertainty about the health effects of prolonged exposure to electromagnetic (EM) radiation from cellular phones. In this paper, an antenna array is designed primarily to minimize users’ exposure to EM radiation. The antenna comprises a beamforming 4 by 3 array of microstrip patch antennas that is controlled by an accelerometer-only inertial navigation system. The proposed design reduces radiated power directed toward the user to below 10% of the total in the worst case.
Printed electronics can benefit from the deployment of electrolytesas gate insulators,which enables a high gate capacitance per unit area (1–10 μFcm−2) due to the formation of electrical double layers (EDLs). Consequently, electrolyte-gated field-effect transistors (EGFETs) attain high-charge carrier densities already in the subvoltage regime, allowing for low-voltage operation of circuits and systems. This article presents a systematic study of lumped terminal capacitances of printed electrolyte-gated transistors under various dc bias conditions. We perform voltage-dependent impedancemeasurements and separate extrinsic components from the lumped terminal capacitance.
The proposed Meyer-like capacitance model, which also accounts for the nonquasi-static (NQS) effect, agrees well with experimental data. Finally, to verify the model, we implement it in Verilog-A and simulate the transient response of an inverter and a ring oscillator circuit. Simulation results are in good agreement with the measurement data of fabricated devices.
Electrolyte-gated, printed field-effect transistors exhibit high charge carrier densities in the channel and thus high on-currents at low operating voltages, allowing for the low-power operation of such devices. This behavior is due to the high area-specific capacitance of the device, in which the electrolyte takes the role of the dielectric layer of classical architectures. In this paper, we investigate intrinsic double-layer capacitances of ink-jet printed electrolyte-gated inorganic field-effect transistors in both in-plane and top-gate architectures by means of voltage-dependent impedance spectroscopy. By comparison with deembedding structures, we separate the intrinsic properties of the double-layer capacitance at the transistor channel from parasitic effects and deduce accurate estimates for the double-layer capacitance based on an equivalent circuit fitting. Based on these results, we have performed simulations of the electrolyte cutoff frequency as a function of electrolyte and gate resistances, showing that the top-gate architecture has the potential to reach the kilohertz regime with proper optimization of materials and printing process. Our findings additionally enable accurate modeling of the frequency-dependent capacitance of electrolyte/ion gel-gated devices as required in the small-signal analysis in the circuit simulation.
Rectifiersare vital electronic circuits for signal and power conversion in various smart sensor applications. The ability to process low input voltage levels, for example, from vibrational energy harvesters is a major challenge with existing passive rectifiers in printed electronics, stemming mainly from the built-in potential of the diode's p-njunction. To address this problem, in this work, we design, fabricate, and characterize an inkjet-printed full-wave rectifier using diode-connected electrolyte-gated thin-film transistors (EGTs). Using both experimental and simulation approaches, we investigate how the rectifier can benefit from the near-zero threshold voltage of transistors, which can be enabled by proper channel geometry setting in EGT technology. The presented circuit can be operated at 1-V input voltage, featuring a remarkably small voltage loss of 140 mV and a cutoff frequency of ~300 Hz. Below the cutoff frequency, more than 2.6-μW dc power is obtained over the load resistances ranging from 5 to 20 kQ. Furthermore, experiments show that the circuit can work with an input amplitude down to 500 mV. This feature makes the presented design highly suitable for a variety of energy-harvesting applications.
An analytical and numerical study of the wobbling dynamics of friction disks is presented. Of particular interest is the excitation mechanism taking into account two contrarian effects both originating in dry friction: the circulatory terms describing the energy input due to the sliding contacts and the friction induced damping which stabilizes the system. Balance of these terms determines the instability domain in the parameter space. It is shown that there is a slip threshold so that, if the slip is under this limit, the system remains stable. If the slip is larger than this limit, then the criterion of stability is determined by the relation between the friction coefficient and the internal damping. The limit cycle appearing in the unstable domain is also investigated. It is shown that the limit cycle can be described as a kind of a regular reverse precession of the wobbling disc. Its amplitude is limited by the geometric nonlinearity and partial contact loss. Analytic results are compared with numeric simulations.
A crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue loading
(2016)
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman's crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.
This paper treats the interaction between acoustic modes and light (Brillouin scattering) in a single mode optical fibre. Different observed spectra of the Brillouin backscattering in several fibres have been already reported. In order to have a clear idea of the process, we made a simulation to be able to `draw' the theoretical Brillouin spectrum of an optical fibre and to identify the origin of the observed backscattered lines.
First, the model and the computation method used in our simulation are described. Second, the experimentally observed spectra of two real fibres are compared with their computed spectra. Real spectra and simulated spectra are in good agreement.
Our work provides an interesting tool to investigate the changes in the Brillouin spectrum when the input parameters (characteristics of an optical fibre) vary. This should give useful indications to people working on systems which use Brillouin backscattering.
The instability of ultra-thin films of an electrolyte bordering a dielectric gas in an external tangential electric field is scrutinized. The solid wall is assumed to be either a conducting or charged dielectric surface. The problem has a steady one-dimensional solution. The theoretical results for a plug-like velocity profile are successfully compared with available experimental data. The linear stability of the steady-state flow is investigated analytically and numerically. Asymptotic long-wave expansion has a triple-zero singularity for a dielectric wall and a quadruple-zero singularity for a conducting wall, and four (for a conducting wall) or three (for a charged dielectric wall) different eigenfunctions. For infinitely small wave numbers, these eigenfunctions have a clear physical meaning: perturbations of the film thickness, of the surface charge, of the bulk conductivity, and of the bulk charge. The numerical analysis provides an important result: the appearance of a strong short-wave instability. At increasing Debye numbers, the short-wave instability region becomes isolated and eventually disappears. For infinitely large Weber numbers, the long-wave instability disappears, while the short-wave instability persists. The linear stability analysis is complemented by a nonlinear direct numerical simulation. The perturbations evolve into coherent structures; for a relatively small external electric field, these are large-amplitude surface solitary pulses, while for a sufficiently strong electric field, these are short-wave inner coherent structures, which do not disturb the surface.
Diese Arbeit beschäftigt sich mit der Biomechanik der Halswirbelsäule (HWS) beim Umgang mit dem Smartphone. Die Kräfte, die auf Wirbelkörper, Wirbelgelenke, Bandscheiben, Muskeln und Bänder wirken, werden mit steigendem Flexionswinkel der HWS größer. Die Beschwerden hingegen, welche der Smartphone-Nacken hervorruft, sind meist akut und mit regelmäßiger Bewegung und der Stärkung der Nackenmuskulatur gut zu behandeln. Eine Therapie ist somit auch zur Vorbeugung geeignet. Doch die Langzeitauswirkungen sind nicht außer Acht zu lassen, denn durch die steigenden Nutzungsmöglichkeiten der Smartphones steigt auch der durchschnittliche tägliche Gebrauch stärker an. So wird vor allem die tägliche Bildschirmzeit bei Jugendlichen immer länger. Das aktuell noch akute Krankheitsbild des Smartphone-Nackens, das nur selten einen chronischen Verlauf nimmt und Langzeitschäden verursacht, könnte sich durch fehlende oder zu späte Maßnahmen zu einem größeren chronischen Krankheitsbild entwickeln.
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
This work compares the performance of Bluetooth Mesh implementations on real chipsets against the ideal implementation of the specification. Measurements are taken in experimental settings and reveal non-idealities in the underlying Bluetooth Low Energy specification in real chipsets and in the implementation of Mesh, which introduces an unruly transmission as well as reception behavior. These effects lead to an impact on transmission rate, reception rate, latency, as well as a more significant impact on the average power consumption.