Refine
Year of publication
Document Type
- Article (reviewed) (423) (remove)
Has Fulltext
- no (423) (remove)
Keywords
- Dünnschichtchromatographie (16)
- Adsorption (11)
- Metallorganisches Netzwerk (9)
- Ermüdung (8)
- Lithiumbatterie (8)
- Energieversorgung (6)
- Intelligentes Stromnetz (6)
- Simulation (6)
- Brennstoffzelle (5)
- Haustechnik (5)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (166)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (135)
- INES - Institut für Energiesystemtechnik (65)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (51)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (49)
- Fakultät Medien und Informationswesen (M+I) (14)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (7)
- IfTI - Institute for Trade and Innovation (5)
- IUAS - Institute for Unmanned Aerial Systems (4)
- POIM - Peter Osypka Institute of Medical Engineering (ab 21.10.2020) (4)
BACKGROUND:
While hearing aids for a contralateral routing of signals (CROS-HA) and bone conduction devices have been the traditional treatment for single-sided deafness (SSD) and asymmetric hearing loss (AHL), in recent years, cochlear implants (CIs) have increasingly become a viable treatment choice, particularly in countries where regulatory approval and reimbursement schemes are in place. Part of the reason for this shift is that the CI is the only device capable of restoring bilateral input to the auditory system and hence of possibly reinstating binaural hearing. Although several studies have independently shown that the CI is a safe and effective treatment for SSD and AHL, clinical outcome measures in those studies and across CI centers vary greatly. Only with a consistent use of defined and agreed-upon outcome measures across centers can high-level evidence be generated to assess the safety and efficacy of CIs and alternative treatments in recipients with SSD and AHL.
METHODS:
This paper presents a comparative study design and minimum outcome measures for the assessment of current treatment options in patients with SSD/AHL. The protocol was developed, discussed, and eventually agreed upon by expert panels that convened at the 2015 APSCI conference in Beijing, China, and at the CI 2016 conference in Toronto, Canada.
RESULTS:
A longitudinal study design comparing CROS-HA, BCD, and CI treatments is proposed. The recommended outcome measures include (1) speech in noise testing, using the same set of 3 spatial configurations to compare binaural benefits such as summation, squelch, and head shadow across devices; (2) localization testing, using stimuli that rove in both level and spectral content; (3) questionnaires to collect quality of life measures and the frequency of device use; and (4) questionnaires for assessing the impact of tinnitus before and after treatment, if applicable.
CONCLUSION:
A protocol for the assessment of treatment options and outcomes in recipients with SSD and AHL is presented. The proposed set of minimum outcome measures aims at harmonizing assessment methods across centers and thus at generating a growing body of high-level evidence for those treatment options.
The effect of fluctuating maskers on speech understanding of high-performing cochlear implant users
(2016)
Objective: The present study evaluated whether the poorer baseline performance of cochlear implant (CI) users or the technical and/or physiological properties of CI stimulation are responsible for the absence of masking release. Design: This study measured speech reception thresholds (SRTs) in continuous and modulated noise as a function of signal to noise ratio (SNR). Study sample: A total of 24 subjects participated: 12 normal-hearing (NH) listeners and 12 subjects provided with recent MED-EL CI systems. Results: The mean SRT of CI users in continuous noise was −3.0 ± 1.5 dB SNR (mean ± SEM), while the normal-hearing group reached −5.9 ± 0.8 dB SNR. In modulated noise, the difference across groups increased considerably. For CI users, the mean SRT worsened to −1.4 ± 2.3 dB SNR, while it improved for normal-hearing listeners to −18.9 ± 3.8 dB SNR. Conclusions: The detrimental effect of fluctuating maskers on SRTs in CI users shown by prior studies was confirmed by the current study. Concluding, the absence of masking release is mainly caused by the technical and/or physiological properties of CI stimulation, not just the poorer baseline performance of many CI users compared to normal-hearing subjects. Speech understanding in modulated noise was more robust in CI users who had a relatively large electrical dynamic range.
In users of a cochlear implant (CI) together with a contralateral hearing aid (HA), so-called bimodal listeners, differences in processing latencies between digital HA and CI up to 9 ms constantly superimpose interaural time differences. In the present study, the effect of this device delay mismatch on sound localization accuracy was investigated. For this purpose, localization accuracy in the frontal horizontal plane was measured with the original and minimized device delay mismatch. The reduction was achieved by delaying the CI stimulation according to the delay of the individually worn HA. For this, a portable, programmable, battery-powered delay line based on a ring buffer running on a microcontroller was designed and assembled. After an acclimatization period to the delayed CI stimulation of 1 hr, the nine bimodal study participants showed a highly significant improvement in localization accuracy of 11.6% compared with the everyday situation without the delay line (p < .01). Concluding, delaying CI stimulation to minimize the device delay mismatch seems to be a promising method to increase sound localization accuracy in bimodal listeners.
Objectives: Speech recognition on the telephone poses a challenge for patients with cochlear implants (CIs) due to a reduced bandwidth of transmission. This trial evaluates a home-based auditory training with telephone-specific filtered speech material to improve sentence recognition. Design: Randomised controlled parallel double-blind. Setting: One tertiary referral centre. Participants: A total of 20 postlingually deafened patients with CIs. Main outcome measures: Primary outcome measure was sentence recognition assessed by a modified version of the Oldenburg Sentence Test filtered to the telephone bandwidth of 0.3-3.4 kHz. Additionally, pure tone thresholds, recognition of monosyllables and subjective hearing benefit were acquired at two separate visits before and after a home-based training period of 10-14 weeks. For training, patients received a CD with speech material, either unmodified for the unfiltered training group or filtered to the telephone bandwidth in the filtered group. Results: Patients in the unfiltered training group achieved an average sentence recognition score of 70.0%±13.6% (mean±SD) before and 73.6%±16.5% after training. Patients in the filtered training group achieved 70.7%±13.8% and 78.9%±7.0%, a statistically significant difference (P=.034, t10 =2.292; two-way RM ANOVA/Bonferroni). An increase in the recognition of monosyllabic words was noted in both groups. The subjective benefit was positive for filtered and negative for unfiltered training. Conclusions: Auditory training with specifically filtered speech material provided an improvement in sentence recognition on the telephone compared to training with unfiltered material.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
The flow field-flow fractionation (FIFFF) technique is a promising method for separating and analysing particles and large size macromolecules from a few nanometers to approximately 50 μm. A new fractionation channel is described featuring well defined flow conditions even for low channel heights with convenient assembling and operations features. The application of the new flow field-flow fractionation channel is proved by the analysis of pigments and other small particles of technical interest in the submicrometer range. The experimental results including multimodal size distributions are presented and discussed.
Modeling and Simulation the Influence of Solid Carbon Formation on SOFC Performance and Degradation
(2013)
Impedance of the Surface Double Layer of LSCF/CGO Composite Cathodes: An Elementary Kinetic Model
(2014)
This article presents a comparative experimental study of the electrical, structural and chemical properties of large‐format, 180 Ah prismatic lithium iron phosphate (LFP)/graphite lithium‐ion battery cells from two different manufacturers. These cells are particularly used in the field of stationary energy storage such as home‐storage systems. The investigations include (1) cell‐to‐cell performance assessment, for which a total of 28 cells was tested from each manufacturer, (2) electrical charge/discharge characteristics at different currents and ambient temperatures, (3) internal cell geometries, components, and weight analysis after cell opening, (4) microstructural analysis of the electrodes via light microscopy and scanning electron microscopy, (5) chemical analysis of the electrode materials using energy‐dispersive X‐ray spectroscopy, and (6) mathematical analysis of the electrode balances. The combined results give a detailed and comparative insight into the cell characteristics, providing essential information needed for system integration. The study also provides complete and self‐consistent parameter sets for the use in cells models needed for performance prediction or state diagnosis.
A wide range catalyst screening with noble metal and oxide catalysts for a metal–air battery with an aqueous alkaline electrolyte was carried out. Suitable catalysts reduce overpotentials during the charge and discharge process, and therefore improve the round-trip efficiency of the battery. In this case, the electrodes will be used as optimized cathodes for a future lithium–air battery with an aqueous alkaline electrolyte. Oxide catalysts were synthesized via atmospheric plasma spraying. The screening showed that IrO2, RuO2, La0.6Ca0.4Co3, Mn3O4, and Co3O4 are promising bi-functional catalysts. Considering the high price for the noble metal catalysts further investigations of the oxide catalysts were carried out to analyze their electrochemical behavior at varied temperatures, molarities, and in case of La1−x Ca x CoO3 a varying calcium content. Additionally all catalysts were tested in a longterm test to proof cyclability at varied molarities. Further investigations showed that Co3O4 seems to be the most promising bi-functional catalyst of the tested oxide catalysts. Furthermore, it was shown that a calcium content of x = 0.4 in LCCO has the best performance.
We present a two-dimensional (2D) planar chromatographic separation of estrogenic active compounds on RP-18 W (Merck, 1.14296) phase. A mixture of 8 substances was separated using a solvent mix consisting of hexane, ethyl acetate, acetone (55:15:10, v/v) in the first direction and of acetone and water (15:10, v/v) in the second direction. Separation was performed on an RP-18 W plate over a distance of 70 mm. This 2D-separation method can be used to quantify 17α-ethinylestradiol (EE2) in an effect-directed analysis, using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducing the reporter gene lacZ which encodes the enzyme β-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl-β-d-galactopyranoside).
Serendipities in der Medizin
(2016)
Zufälle begleiten unser Leben. Auch bei wichtigen Entdeckungen und Entwicklungen in der Medizin spielt der „Zufall“ (engl. „serendipity“) eine Rolle. Hierzu gehören u. a. die Mendelschen Gesetze, die Ermittlung der menschlichen Chromosomenzahl, die Entdeckung der DNS durch Watson und Crick, der PAP-Test oder die Entdeckung der Röntgenstrahlung und der Radioaktivität. Aber auch und gerade in der Pharmakologie gibt es viele Beispiele für Serendipitäten. Einige gehen eng mit Zufällen bei der Entdeckung der Bakteriologie einher.
The authors claim that location information of stationary ICT components can never be unclassified. They describe how swarm-mapping crowd sourcing is used by Apple and Google to worldwide harvest geo-location information on wireless access points and mobile telecommunication systems' base stations to build up gigantic databases with very exclusive access rights. After having highlighted the known technical facts, in the speculative part of this article, the authors argue how this may impact cyber deterrence strategies of states and alliances understanding the cyberspace as another domain of geostrategic relevance. The states and alliances spectrum of activities due to the potential existence of such databases may range from geopolitical negotiations by institutions understanding international affairs as their core business, mitigation approaches at a technical level, over means of cyber deterrence-by-retaliation.
Im Rahmen der Cochleaimplantat (CI)-Versorgung werden sowohl intraoperativ als auch postoperativ verschiedene elektrische und elektrophysiologische Diagnostikverfahren eingesetzt, bei denen elektrische Messgrößen vom CI erfasst und elektrophysiologische Messungen bei CI-Patienten durchgeführt werden. Zu den elektrophysiologischen Diagnostikverfahren zählen die Messung der elektrisch evozierten Summenaktionspotenziale des Hörnervs, die Registrierung der elektrisch evozierten auditorischen Hirnstammpotenziale und die Erfassung der elektrisch evozierten auditorischen kortikalen Potenziale. Diese Potenziale widerspiegeln die Erregung des Hörnervs und die Reizverarbeitung in verschiedenen Stationen der aufsteigenden Hörbahn bei intracochleärer elektrischer Stimulation mittels eines CI. Bei den aktuellen CI sind die Beurteilung der Elektrodenlage sowie die Prüfung der Ankopplung des Implantats an den Hörnerv wichtige Anwendungsgebiete der elektrophysiologischen Diagnostikverfahren. Ein weiteres bedeutendes Einsatzfeld stellt die Prüfung der Reizverarbeitung in der Hörbahn dar. Das Hauptanwendungsgebiet dieser Verfahren bildet jedoch die Unterstützung der Anpassung der CI-Sprachprozessoren bei Säuglingen und Kleinkindern auf der Basis elektrophysiologischer Schwellen.
Time-of-Flight Cameras Enabling Collaborative Robots for Improved Safety in Medical Applications
(2017)
Human-robot collaboration is being used more and more in industry applications and is finding its way into medical applications. Industrial robots that are used for human-robot collaboration, cannot detect obstacles from a distance. This paper introduced the idea of using wireless technology to connect a Time-of-Flight camera to off-the-shelf industrial robots. This way, the robot can detect obstacles up to a distance of five meters. Connecting Time-of-Flight cameras to robots increases the safety in human-robot collaboration by detecting obstacles before a collision. After looking at the state of the art, the authors elaborated the different requirements for such a system. The Time-of-Flight camera from Heptagon is able to work in a range of up to five meters and can connect to the control unit of the robot via a wireless connection.
In many application domains, in particular automotives, guaranteeing a very low failure rate is crucial to meet functional and safety standards. Especially, reliable operation of memory components such as SRAM cells is of essential importance. Due to aggressive technology downscaling, process and runtime variations significantly impact manufacturing yield as well as functionality. For this reason, a thorough memory failure rate assessment is imperative for correct circuit operation and yield improvement. In this regard, Monte Carlo simulations have been used as the conventional method to estimate the variability induced failure rate of memory components. However, Monte Carlo methods become infeasible when estimating rare events such as high-sigma failure rates. To this end, Importance Sampling methods have been proposed which reduce the number of required simulations substantially. However, existing methods still suffer from inaccuracies and high computational efforts, in particular for high-sigma problems. In this paper, we fill this gap by presenting an efficient mixture Importance Sampling approach based on Bayesian optimization, which deploys a surface model of the objective function to find the most probable failure points. Its advantages include constant complexity independent of the dimensions of design space, the potential to find the global extrema, and higher trustworthiness of the estimated failure rate by accurately exploring the design space. The approach is evaluated on a 6T-SRAM cell as well as a master-slave latch based on a 28nm FDSOI process. The results show an improvement in accuracy, resulting in up to 63× better accuracy in estimating failure rates compared to the best state-of-the-art solutions on a 28nm technology node.
Battery degradation is a complex physicochemical process that strongly depends on operating conditions. We present a model-based analysis of lithium-ion battery degradation in a stationary photovoltaic battery system. We use a multi-scale multi-physics model of a graphite/lithium iron phosphate (LiFePO4, LFP) cell including solid electrolyte interphase (SEI) formation. The cell-level model is dynamically coupled to a system-level model consisting of photovoltaics (PV), inverter, load, grid interaction, and energy management system, fed with historic weather data. Simulations are carried out for two load scenarios, a single-family house and an office tract, over annual operation cycles with one-minute time resolution. As key result, we show that the charging process causes a peak in degradation rate due to electrochemical charge overpotentials. The main drivers for cell ageing are therefore not only a high state of charge (SOC), but the charging process leading towards high SOC. We also show that the load situation not only influences system parameters like self-sufficiency and self-consumption, but also has a significant impact on battery ageing. We assess reduced charge cut-off voltage as ageing mitigation strategy.
The efficiency of a chromatographic analytical method is determined by the selectivity of the chromatographic separation and the specificity of the detection method. In high-performance thin-layer chromatography (HPTLC) the separated components can be detected and quantified directly on the plate by physical and chemical methods. By coupling high-performance thin-layer chromatography with biological or biochemical inhibition tests it is possible to detect toxic substances in situ.
Auf Grundlage der Computer-Aided-Design (CAD)-rekonstruierten ersten „Eisernen
Hand“ des Götz von Berlichingen wird ein umgebautes, controllergesteuertes sensomotorisches Fingersystem auf seine Funktionalität beim Greifen von unterschiedlichen
Gegenständen beschrieben und geprüft. Die elektronischen Finger, die den „Pinzettengriff“
nachahmen und automatisch bei dem zuvor eingestellten Anpressdruck abschalten,
bewiesen eine bemerkenswerte Alltagstauglichkeit. Das vorgestellte Grundkonzept könnte
eine Alternative bei der Entwicklung einfacher und kostengünstiger, aber dennoch gut
einsatzfähiger bionischer Hände sein und zeigt einmal mehr, wie historische Ideen in die
Gegenwart transferiert werden können.
Im Jahr 1504 verlor der deutsche Ritter Gottfried („Götz“) von Berlichingen seine
rechte Hand. Schon während seiner Genesung dachte er daran, die Hand zu ersetzen,
und beauftragte bald darauf die erste Handprothese, die sogenannte „Eiserne Hand“.
Jahre später wurde die aufwändigere zweite „Eiserne Hand“ gebaut. Wir haben die erste
Prothese auf der Basis früherer Literaturdaten von
Quasigroch (1982) mit Hilfe von 3-D
Computer-Aided Design (CAD) rekonstruiert. Dazu mussten einige Abmessungen angepasst
und ein paar Annahmen für das CAD-Modell gemacht werden. Die historische passive
Prothese des Götz von Berlichingen ist für die moderne Neuroprothetik interessant, da sie
eine Alternative zu komplexen invasiven Brain-Machine-Interface-Konzepten darstellen
könnte, wo diese Konzepte nicht notwendig, möglich oder vom Patienten gewünscht sind.
The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3d printer. The aim of the study was to produce a 3d print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation. The basis of 3d printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front Advance™ from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3d printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used and a final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing. With the help of the thermal simulation results and the subsequent evaluation, it was possible to draw a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It was measured that just 3 mm from the balloon surface into the myocardium the temperature dropped to 25 °C. The simulation model was printed using two 3d printing methods. Both methods, as well as the different printing materials offer different advantages and disadvantages. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model. Three-dimensional heart rhythm models as well as virtual simulations allow very clear visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
The automatic classification of the modulation format of a detected signal is the intermediate step between signal detection and demodulation. If neither the transmitted data nor other signal parameters such as the frequency offset, phase offset and timing information are known, then automatic modulation classification (AMC) is a challenging task in radio monitoring systems. The approach of clustering algorithms is a new trend in AMC for digital modulations. A novel algorithm called `highest constellation pattern matching' is introduced to identify quadrature amplitude modulation and phase shift keying signals. The obtained simulation and measurement results outperform the existing algorithms for AMC based on clustering. Finally, it is shown that the proposed algorithm works in a real monitoring environment.
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases.
Exploiting Dissent: Towards Fuzzing-based Differential Black Box Testing of TLS Implementations
(2017)
The Transport Layer Security (TLS) protocol is one of the most widely used security protocols on the internet. Yet do implementations of TLS keep on suffering from bugs and security vulnerabilities. In large part is this due to the protocol's complexity which makes implementing and testing TLS notoriously difficult. In this paper, we present our work on using differential testing as effective means to detect issues in black-box implementations of the TLS handshake protocol. We introduce a novel fuzzing algorithm for generating large and diverse corpuses of mostly-valid TLS handshake messages. Stimulating TLS servers when expecting a ClientHello message, we find messages generated with our algorithm to induce more response discrepancies and to achieve a higher code coverage than those generated with American Fuzzy Lop, TLS-Attacker, or NEZHA. In particular, we apply our approach to OpenssL, BoringSSL, WolfSSL, mbedTLS, and MatrixSSL, and find several real implementation bugs; among them a serious vulnerability in MatrixSSL 3.8.4. Besides do our findings point to imprecision in the TLS specification. We see our approach as present in this paper as the first step towards fully interactive differential testing of black-box TLS protocol implementations. Our software tools are publicly available as open source projects.
Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.
There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.
Im Eurocode 3 wird im Gegensatz zu DIN 18800 die Bemessung von Verbindungen nicht in der Grundnorm DIN EN 1993‐1‐1, sondern in anderen Normenteilen geregelt. Dieser Beitrag behandelt die Bemessung geschweißter Verbindungen nach DIN EN 1993‐1‐8, die auch Hohlprofile, aber weder dünnwandige Bauteile noch Stähle höherer Festigkeit als S460 einschließt, vergleicht diese Bemessung mit der nach DIN 18800‐1, erläutert sie an Beispielen und hebt die wesentlichen Änderungen hervor. Da diese Änderungen auch die im Vergleich zu DIN 18800 viel stärkere Verknüpfung der in der Tragwerksplanung ansetzbaren Beanspruchbarkeiten mit dem Aufwand der Prüfung und Qualitätsüberwachung bei der Herstellung betreffen, werden abschließend wichtige Regelungen der DIN EN 1090‐2 zur Ausführung und Prüfung von Schweißnähten beschrieben, die auch der Tragwerksplaner kennen muss.
There is an increasing demand by an ever-growing number of mobile customers for transfer of rich media content. This requires very high bandwidth which either cannot be provided by the current cellular systems or puts pressure on the wireless networks, affecting customer service quality. This study introduces COARSE – a novel cluster-based quality-oriented adaptive radio resource allocation scheme, which dynamically and adaptively manages the radio resources in a cluster-based two-hop multi-cellular network, having a frequency reuse of one. COARSE is a cross-layer approach across physical layer, link layer and the application layer. COARSE gathers data delivery-related information from both physical and link layers and uses it to adjust bandwidth resources among the video streaming end-users. Extensive analysis and simulations show that COARSE enables a controlled trade-off between the physical layer data rate per user and the number of users communicating using a given resource. Significantly, COARSE provides 25–75% improvement in the computed user-perceived video quality compared with that obtained from an equivalent single-hop network.
Amorphous In-Ga-Zn-O (IGZO) is a high-mobility semiconductor employed in modern thin-film transistors for displays and it is considered as a promising material for Schottky diode-based rectifiers. Properties of the electronic components based on IGZO strongly depend on the manufacturing parameters such as the oxygen partial pressure during IGZO sputtering and post-deposition thermal annealing. In this study, we investigate the combined effect of sputtering conditions of amorphous IGZO (In:Ga:Zn=1:1:1) and post-deposition thermal annealing on the properties of vertical thin-film Pt-IGZO-Cu Schottky diodes, and evaluated the applicability of the fabricated Schottky diodes for low-frequency half-wave rectifier circuits. The change of the oxygen content in the gas mixture from 1.64% to 6.25%, and post-deposition annealing is shown to increase the current rectification ratio from 10 5 to 10 7 at ±1 V, Schottky barrier height from 0.64 eV to 0.75 eV, and the ideality factor from 1.11 to 1.39. Half-wave rectifier circuits based on the fabricated Schottky diodes were simulated using parameters extracted from measured current-voltage and capacitance-voltage characteristics. The half-wave rectifier circuits were realized at 100 kHz and 300 kHz on as-fabricated Schottky diodes with active area of 200 μm × 200 μm, which is relevant for the near-field communication (125 kHz - 134 kHz), and provided the output voltage amplitude of 0.87 V for 2 V supply voltage. The simulation results matched with the measurement data, verifying the model accuracy for circuit level simulation.
We generalize the fluid flow problem of an oscillating flat plate (II. Stokes problem) in two directions. We discuss first the oscillating porous flat plate with superimposed blowing or suction. The second generalization is concerned with an increasing or decreasing velocity amplitude of the oscillating flat plate. Finally we show that a combination of both effects is possible as well.
In this article, we present a taxonomy in Robot-Assisted Training; a growing body of research in Human–Robot Interaction which focuses on how robotic agents and devices can be used to enhance user’s performance during a cognitive or physical training task. Robot-Assisted Training systems have been successfully deployed to enhance the effects of a training session in various contexts, i.e., rehabilitation systems, educational environments, vocational settings, etc. The proposed taxonomy suggests a set of categories and parameters that can be used to characterize such systems, considering the current research trends and needs for the design, development and evaluation of Robot-Assisted Training systems. To this end, we review recent works and applications in Robot-Assisted Training systems, as well as related taxonomies in Human–Robot Interaction. The goal is to identify and discuss open challenges, highlighting the different aspects of a Robot-Assisted Training system, considering both robot perception and behavior control.
Crystal structures of two metal–organic frameworks (MFU‐1 and MFU‐2) are presented, both of which contain redox‐active CoII centres coordinated by linear 1,4‐bis[(3,5‐dimethyl)pyrazol‐4‐yl] ligands. In contrast to many MOFs reported previously, these compounds show excellent stability against hydrolytic decomposition. Catalytic turnover is achieved in oxidation reactions by employing tert‐butyl hydroperoxide and the solid catalysts are easily recovered from the reaction mixture. Whereas heterogeneous catalysis is unambiguously demonstrated for MFU‐1, MFU‐2 shows catalytic activity due to slow metal leaching, emphasising the need for a deeper understanding of structure–reactivity relationships in the future design of redox‐active metal–organic frameworks. Mechanistic details for oxidation reactions employing tert‐butyl hydroperoxide are studied by UV/Vis and IR spectroscopy and XRPD measurements. The catalytic process accompanying changes of redox states and structural changes were investigated by means of cobalt K‐edge X‐ray absorption spectroscopy. To probe the putative binding modes of molecular oxygen, the isosteric heats of adsorption of O2 were determined and compared with models from DFT calculations. The stabilities of the frameworks in an oxygen atmosphere as a reactive gas were examined by temperature‐programmed oxidation (TPO). Solution impregnation of MFU‐1 with a co‐catalyst (N‐hydroxyphthalimide) led to NHPI@MFU‐1, which oxidised a range of organic substrates under ambient conditions by employing molecular oxygen from air. The catalytic reaction involved a biomimetic reaction cascade based on free radicals. The concept of an entatic state of the cobalt centres is proposed and its relevance for sustained catalytic activity is briefly discussed.
Silicon (Si) has turned out to be a promising active material for next‐generation lithium‐ion battery anodes. Nevertheless, the issues known from Si as electrode material (pulverization effects, volume change etc.) are impeding the development of Si anodes to reach market maturity. In this study, we are investigating a possible application of Si anodes in low‐power printed electronic applications. Tailored Si inks are produced and the impact of carbon coating on the printability and their electrochemical behavior as printed Si anodes is investigated. The printed Si anodes contain active material loadings that are practical for powering printed electronic devices, like electrolyte gated transistors, and are able to show high capacity retentions. A capacity of 1754 mAh/gSi is achieved for a printed Si anode after 100 cycles. Additionally, the direct applicability of the printed Si anodes is shown by successfully powering an ink‐jet printed transistor.
The Future of FDI: Achieving the Sustainable Development Goals 2030 through Impact Investment
(2019)
Publicized as a global call for action in 2015, the United Nations General Assembly passed a resolution on the Sustainable Development Goals 2030 (SDGs). Before issuing the SDGs in 2015, the United Nations Conference on Trade and Development (UNCTAD) has already identified in 2014, as part of their World Investment Report, that especially developing countries are facing an estimated USD 2.5 trillion funding gap annually in the efforts to achieve the SDGs. Yet, the investment opportunities and challenges for investors, when contributing to the closure of this funding gap while benefiting from its economic potential have not been widely discussed. Despite that Foreign Direct Investments (FDI) are a key driver to sustainable economic growth and prosperity of a nation, policies and a holistic framework linking the 2030 Agenda to actionable investment opportunities for private investors are missing. Furthermore, a global platform capturing, channeling and promoting investment projects aiming to achieve the SDGs through impact investment has not been established. Utilizing global financial resources more effectively while developing new approaches and tools to promote impact investments, which demonstrate the benefits for investors to tap into the funding gap of the 2030 Agenda, will have the potential to significantly shape and influence the future of FDI.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.
The use of a TLC scanner can be regarded as a key step in high performance thin layer chromatography (HPTLC). Densitometric measurements transform the substance distribution on a TLC plate into digital computer data. Systems that allow quantitative measurements have been available for many years for either fluorescence or ultraviolet absorption measurements, while lately the reflection analysis mode for both types is the most common application. New scanning approaches are designed to aid the analyst who has common demands for TLC-densitometry without using special data, such as scanned images. Two examples that have been developed lately in the laboratories of the authors are described in this paper. These approaches were developed on the basis of current needs for analysts who employ TLC as a tool in research, as well as in routine analysis. One approach is aimed to support analysts in economically disadvantaged areas, where cost intensive apparatus is unsuitable but trace analysis by simple means is required. The other system, allows the spectral determination of chromatographic spots on TLC plates covering the ultraviolet and visible range, thus, revealing highly desired information for the analyst.
The production of potable water in dry areas nowadays is mainly done by the desalination of seawater. State of the art desalination plants usually are built with high production capacities and consume a lot of electrical energy or energy from primary resources such as oil. This causes difficulties in rural areas, where no infrastructure is available neither for the plants’ energy supply nor the distribution of the produced potable water. To address this need, small, self-sustaining and locally operated desalination plants came into the focus of research. In this work, a novel flash evaporator design is proposed which can be driven either by solar power or by low temperature waste heat. It offers low operation costs as well as easy maintenance. The results of an experimental setup operated with water at a feed flow rate of up to 1,600 l/h are presented. It is shown that the proof of concept regarding efficient evaporation as well as efficient gas-liquid separation is provided successfully. The experimental evaporation yield counts for 98 % of the vapor content that is expected from the vapor pressure curve of water. Neither measurements of the electrical conductivity of the gained condensate, nor the analysis of the vapor flow by optical methods show significant droplet entrainment, so there are no concerns regarding the purity of the produced condensate for the use as drinking water.