Refine
Year of publication
Document Type
- Conference Proceeding (38)
- Article (reviewed) (10)
- Book (6)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (2)
- Contribution to a Periodical (1)
- Other (1)
Language
- English (44)
- German (20)
- Other language (1)
Has Fulltext
- no (65) (remove)
Keywords
- Ausbildung (6)
- Produktion (6)
- Design (4)
- CAD (3)
- Digitalisierung (3)
- Druck (3)
- Additive Manufacturing (2)
- CAAD (2)
- Dimension 3 (2)
- Multi-Material 3D-Printing (2)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (59)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (5)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (4)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (1)
In this study, we tested the function of a replica of the over 500-year-old original of the
famous Franconian Imperial Knight Götz von Berlichingen’s first “iron hand”, which we
reconstructed by computer-aided design (CAD) and recently printed using a multi-material
3D printer. In different everyday tasks, the artificial hand prosthesis proved to be remarkably
helpful. Thus, the hand could hold a wine glass, some grapes, or a smartphone. With a
suitable pencil, even writing was possible without any problem. Although for all these
functions the healthy other hand was necessary to assist at the beginning, the artificial hand
is an astonishing mechanical aid with many possibilities. Therefore, in certain cases, the
non-invasive approach of a passive mechanical hand replacement, which is an individual,
quick and cheap solution due to modern 3D printing, may always be worth considering
also for today’s requirements.
The visualization of heart rhythm disturbance and atrial fibrillation therapy allows the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3d printer. The aim of the study was to produce a 3d print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation. The basis of 3d printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front Advance™ from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3d printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used and a final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing. With the help of the thermal simulation results and the subsequent evaluation, it was possible to draw a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It was measured that just 3 mm from the balloon surface into the myocardium the temperature dropped to 25 °C. The simulation model was printed using two 3d printing methods. Both methods, as well as the different printing materials offer different advantages and disadvantages. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model. Three-dimensional heart rhythm models as well as virtual simulations allow very clear visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Um medizinische Behandlungsverfahren in der Praxis besser verstehen und anwenden zu können, gewinnt die Visualisierung der Prozesse an immer größerer Bedeutung. Durch Anwendung der Computer-Simulationssoftware CST können elektromagnetische und thermische Simulationen zur Analyse verschiedener Herzrhythmusstörungen durchgeführt werden. Eine weitere Form der Visualisierung erfolgt durch haptische, dreidimensionale Druckmodelle. Diese Modelle können mit einem generativen Herstellungsverfahren, wie z. B. einem 3D-Drucker, in kürzester Zeit hergestellt werden.
Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
(2019)
The visualization of heart rhythm disturbance and atrial fibrillation therapy allow the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3D printer. The aim of the study was to produce a 3D print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation.
The basis of 3D printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front AdvanceTM from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3D printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used: 1. a binder jetting printer with polymer gypsum and 2. a multi-material printer with photopolymer. A final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing.
With the help of the thermal simulation results and the subsequent evaluation, it was possible to make a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It could be measured that already 3 mm from the balloon surface into the myocardium the temperature drops to 25 °C. The simulation model was printed using two 3D printing methods. Both methods as well as the different printing materials offer different advantages and disadvantages. While the first model made of polymer gypsum can be produced quickly and cheaply, the second model made of photopolymer takes five times longer and was twice as expensive. On the other hand, the second model offers significantly better properties and was more durable overall. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model.
Three-dimensional heart rhythm models as well as virtual simulations allow a very good visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Additive Manufacturing of High-Strength components using impregnated polymer plaster composites
(2015)
Besides of conventional CAD systems, new, cloud-based CAD systems have also been available for some years. These CAD systems designed according to the principle of software as a service (SaaS) differ in some important features from the conventional CAD systems. Thus, these CAD systems are operated via a browser and it is not necessary to install the software on a computer. The CAD-data is stored in the cloud and not on a local computer or central server. This new approach should also facilitate the sharing and management of data. Finally, many of these new CAD systems are available as freeware for education purposes, so the universities can save license costs. This contribution examines newly developed, cloud-based CAD systems. In the context of a case study, the application of these new CAD systems are investigated in the training of engineers in design education. Thus, the students compare a conventional and a cloud-based CAD system as part of an exercise of designing and 3D modelling of a pinion shaft. Subsequently, the students manufacture a drawing with different views of the pinion shaft. This assessment evaluates different criteria such as user-friendliness, tutorial support and installation effort.
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
Direct Digital Manufacturing of Architectural Models using Binder Jetting and Polyjet Modeling
(2019)
Today, architectural models are an important tool for illustrating drawn-on plansor computer-generated virtual models and making them understandable. Inaddition to the conventional methods for the manufacturing of physical models, awide range of processes for Direct Digital Manufacturing (DDM) has spreadrapidly in recent years. In order to facilitate the application of these new methodsfor architects, this contribution examines which technical and economic resultsare possible using 3D printed architectural models. Within a case study, it will beshown on the basis of a multi-storey detached house, which kind of datapreparation is necessary. The DDM of architectural models will be demonstratedusing two widespread techniques and the resulting costs will be compared.
Einsatz von Additive Manufacturing zur Darstellung von Simulationsergebnissen in der Blechumformung
(2016)
Fusion 360 – kurz und bündig
(2020)
Dieses Lehrbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem cloudbasierten CAD-System Autodesk® Fusion 360TM. Der Schwerpunkt liegt dabei auf den grundlegenden Funktionen zur Modellierung von Einzelteilen und dem Zusammenbau von Produkten, sowie in der Erstellung von einfachen technischen Zeichnungen. Dabei werden bei jedem Schritt die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Somit ist das Ergebnis dieser „Schritt für Schritt“-Anleitung die vollständige Modellierung eines Miniatur-Automobils, das am 3D-Drucker in ein reales Modell umgesetzt werden kann. Das didaktische Konzept ist so ausgelegt, dass alle Schritte für ein Selbststudium geeignet sind. Die vorliegende Auflage wurde komplett überarbeitet, sie basiert auf der neuen Benutzeroberfläche User Interface (UI) und enthält ein neues Kapitel zum CNC-Blechbiegen.
Fusion 360 – kurz und bündig
(2019)
Dieses Lehrbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem cloudbasierten CAD-System Autodesk® Fusion 360™. Der Schwerpunkt liegt dabei auf den grundlegenden Funktionen zur Modellierung von Einzelteilen und Produkten, sowie in der Erstellung von einfachen technischen Zeichnungen. Dabei werden bei jedem Schritt die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Somit ist das Ergebnis dieser "Schritt für Schritt"-Anleitung die vollständige Modellierung eines Miniatur-Automobils, das am 3D-Drucker in ein reales Modell umgesetzt werden kann. Das didaktische Konzept ist so ausgelegt, dass alle Schritte für ein Selbststudium geeignet sind.
Implementation of interdisciplinary student teams in design education for additive manufacturing
(2018)
Additive manufacturing (AM) technologies are becoming increasingly popular in all areas of product development. Therefore, it is imperative that students be taught Design for AM. However, due to the rapid development of new methods and materials for AM, it does not make sense to only teach particular design guidelines, as these can quickly become obsolete. Rather, students should acquire the competence to develop guidelines themselves, that take into account the current state of the art. Thus, they will be able to react to changing processes and new materials
in the future. In order to convey the independent development of design guidelines for additive manufacturing by students, a new concept was developed, which is presented in this contribution. In this process, the learning goal is worked out by a group of students on the basis of a practical
task. The group consists of an interdisciplinary team in order to combine different competencies and to provide different perspectives on the task. A case study will show the design and manufacture of a miniature aircraft using Fused Layer Modelling. The aim of the development is above all the design for additive manufacturing. In addition, a low use of resources in combination with lightweight construction should be achieved. In the implementation of the task, the students are confronted with challenging aerodynamic design of wings as well as with the economic evaluation of the development process. An examination of the level of knowledge before and after the case study examines the learning success.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
The additive manufacturing processes have developed significantly in recent years. Currently, new generative processes are coming onto the market. Likewise, the number of available materials that can be processed using additive processes is steadily increasing. Therefore, an important task is to integrate these new processes and materials into the university education of engineers. Due to the rapid change and the constant development in the field of additive manufacturing, a pure transfer of knowledge is not expedient, because this obsolete very quickly. Rather, the students should be enabled to use their skills in such a way that they can always handle new technologies and materials independently and meaningfully.
In this paper, therefore, a new course is developed in which the students largely independently work with additive manufacturing processes. For this purpose, teams of four to five students from different technical programs are formed. The teams have the task of developing and manufacturing a product using additive processes. The goal is to create a powerful product by taking into account the optimization of costs and use of resources.
As an example, the development and additive manufacturing of an ornithopter (aircraft that flies by flapping its wings) will be presented in this contribution. The students have to analyze and optimize the mechanics and aerodynamics of the aircraft. In addition, the rules for production-oriented design must be determined and applied. Further more, they should assess the costs and material consumption during development and production.
This contribution shows how the students have achieved the different learning outcomes. In addition, it becomes clear how the students independently acquired and applied their knowledge in development, design and additive manufacturing. Also, it will be demonstrated how much time the students spent on learning the different technologies.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
Additive manufacturing (AM) and in particular the application of 3D multi material printing offers completely new production technologies thanks to the degree of freedom in design and the simultaneous processing of several materials in one component. Today's CAD systems for product development are volume-based and therefore cannot adequately implement the multi-material approach. Voxel-based CAD systems offer the advantage that a component can be divided into many voxels and different materials and functions can be assigned to these voxels. In this contribution two voxel-based CAD systems will be analyzed in order to simplify the AM on voxel level with different materials. Thus, a number of suitable criteria for evaluating voxel-based CAD systems are being developed and applied. The results of a technical-economic comparison show the differences between the voxel-based systems and disclose their disadvantages compared to conventional CAD systems. In order to overcome these disadvantages, a new method is therefore presented as an approach that enables the voxelization of a component in a simple way based on a conventional CAD model. The process chain of this new method is demonstrated using a typical component from product design. The results of this implementation of the new method are illustrated and analyzed.
Dieses Lehrbuch ermöglicht dem Anfänger in der 3D-Modellierung einen schnellen Einstieg in die Arbeit mit dem cloudbasierten praxisorientierten CAD-System Onshape. Dabei werden bei jedem Schritt die besonderen Anforderungen an eine 3D-Druck-gerechte Gestaltung erläutert und umgesetzt. Somit ist das Ergebnis dieser „Schritt für Schritt“-Anleitung die vollständige Modellierung eines Miniatur-Automobils, das am 3D-Drucker in ein reales Modell umgesetzt werden kann. Die aktuelle Auflage wurde zugunsten besserer Lesbarkeit in ein größeres Format gebracht, die Inhalte wurden neu gegliedert und aktualisiert und um das Kapitel „Blechbauteile für CNC-Biegen" erweitert.