Refine
Year of publication
Document Type
- Article (reviewed) (46)
- Article (unreviewed) (31)
- Letter to Editor (16)
- Part of a Book (11)
- Other (10)
- Conference Proceeding (5)
- Book (4)
- Contribution to a Periodical (4)
- Patent (2)
- Moving Images (1)
Has Fulltext
- no (130) (remove)
Keywords
- Götz von Berlichingen (9)
- Gehirn (5)
- Johann Sebastian Bach (4)
- Medizin (4)
- Durchblutung (3)
- Halswirbelsäule (3)
- Hand (3)
- Nuklearmedizin (3)
- Paganini, Niccolò (3)
- Schlafforschung (3)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (84)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (37)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (6)
- IUAS - Institute for Unmanned Aerial Systems (6)
- POIM - Peter Osypka Institute of Medical Engineering (ab 21.10.2020) (4)
- Fakultät Medien und Informationswesen (M+I) (3)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (1)
Im Jahr 1504 verlor der deutsche Ritter Gottfried („Götz“) von Berlichingen seine
rechte Hand. Schon während seiner Genesung dachte er daran, die Hand zu ersetzen,
und beauftragte bald darauf die erste Handprothese, die sogenannte „Eiserne Hand“.
Jahre später wurde die aufwändigere zweite „Eiserne Hand“ gebaut. Wir haben die erste
Prothese auf der Basis früherer Literaturdaten von
Quasigroch (1982) mit Hilfe von 3-D
Computer-Aided Design (CAD) rekonstruiert. Dazu mussten einige Abmessungen angepasst
und ein paar Annahmen für das CAD-Modell gemacht werden. Die historische passive
Prothese des Götz von Berlichingen ist für die moderne Neuroprothetik interessant, da sie
eine Alternative zu komplexen invasiven Brain-Machine-Interface-Konzepten darstellen
könnte, wo diese Konzepte nicht notwendig, möglich oder vom Patienten gewünscht sind.
In this study, we tested the function of a replica of the over 500-year-old original of the
famous Franconian Imperial Knight Götz von Berlichingen’s first “iron hand”, which we
reconstructed by computer-aided design (CAD) and recently printed using a multi-material
3D printer. In different everyday tasks, the artificial hand prosthesis proved to be remarkably
helpful. Thus, the hand could hold a wine glass, some grapes, or a smartphone. With a
suitable pencil, even writing was possible without any problem. Although for all these
functions the healthy other hand was necessary to assist at the beginning, the artificial hand
is an astonishing mechanical aid with many possibilities. Therefore, in certain cases, the
non-invasive approach of a passive mechanical hand replacement, which is an individual,
quick and cheap solution due to modern 3D printing, may always be worth considering
also for today’s requirements.
Auf Grundlage der Computer-Aided-Design (CAD)-rekonstruierten ersten „Eisernen
Hand“ des Götz von Berlichingen wird ein umgebautes, controllergesteuertes sensomotorisches Fingersystem auf seine Funktionalität beim Greifen von unterschiedlichen
Gegenständen beschrieben und geprüft. Die elektronischen Finger, die den „Pinzettengriff“
nachahmen und automatisch bei dem zuvor eingestellten Anpressdruck abschalten,
bewiesen eine bemerkenswerte Alltagstauglichkeit. Das vorgestellte Grundkonzept könnte
eine Alternative bei der Entwicklung einfacher und kostengünstiger, aber dennoch gut
einsatzfähiger bionischer Hände sein und zeigt einmal mehr, wie historische Ideen in die
Gegenwart transferiert werden können.
Knight Götz von Berlichingen (1480–1562) lost his right hand distal to the wrist due to a cannon ball splinter injury in 1504 in the Landshut War of Succession at the age of 24. Early on, Götz commissioned a gunsmith to build the first “Iron Hand,” in which the artificial thumb and two finger blocks could be moved in their basic joints by a spring mechanism and released by a push button. Some years later, probably around 1530, a second “Iron Hand” was built, in which the fingers could be moved passively in all joints. In this review, the 3D computer-aided design (CAD) reconstructions and 3D multi-material polymer replica printings of the first “Iron hand“, which were developed in the last few years at Offenburg University, are presented. Even by today’s standards, the first “Iron Hand”—as could be shown in the replicas—demonstrates sophisticated mechanics and well thought-out functionality and still offers inspiration and food for discussion when it comes to the question of an artificial prosthetic replacement for a hand. It is also outlined how some of the ideas of this mechanical passive prosthesis can be translated into a modern motorized active prosthetic hand by using simple, commercially available electronic components.
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.
All you need is sleep
(2016)
In 21st century, the century when the humanity hopes to embark on interplanetary travel, we are yet to fully reach an understanding of our very own idiosyncratic terra incognita – the human sleep. Sleep is a highly conserved evolutionary process that constitutes approximately one third of our life, and the lack or inadequate sleep may lead to impairment across multiple cognitive domains (Tononi and Cirelli, 2014; Lim and Dinges, 2010). Sleep deprivation also leads to aberrant brain functioning, immunological and metabolic collapse, and if it is sufficiently prolonged it will ultimately lead to death (Tononi and Cirelli, 2014).
There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.
Am Buffet des Lebens
(2017)
In dieser Arbeit wird ein historischer Fallbericht des bis heute weit über seine Landesgrenzen
bekannten italienischen Kriminalanthropologen Cesare Lombroso (1835–1909)
vorgestellt. In diesem Fallbericht wird der berüchtigte und psychisch auffällige Dieb Pietro
Bersone mit Hilfe eines sog. Hydrosphygmographen überführt, einem zur damaligen Zeit
neuartigen technischen Gerät, das den Puls nicht-invasiv aufzeichnen konnte. Lombroso ist
vermutlich einer der ersten, wenn nicht sogar der erste, der durch den Einsatz eines solchen
Geräts die Idee zum „Lügendetektor“ vorweggenommen hat. Die vorgestellte Textstelle aus
Lombrosos Buch „Neue Fortschritte in den Verbrecherstudien“ ist daher ein besonderes
Fundstück auch für die Geschichte der Polygraphie.
(1) Background: Little is known about the baroque composer Domenico Scarlatti (1685-1757), whose life was centred behind closed doors at the royal court in Spain. There are no reports about his illnesses. From his compositions, mainly for harpsichord, an outstanding virtuosity can be read. (2) Case Presentation: In this case report, the only known oil painting of Domenico Scarlatti is presented, on which he is about 50 years old. In it one recognizes conspicuous hands with hints of watch glass nails and drumstick fingers. (3) Discussion: Whether Scarlatti had chronic hypoxia of peripheral body regions as a sign of, e.g., bronchial cancer or a severe heart disease, is not known. (4) Conclusions: The above-mentioned signs recorded in the oil painting, even if they were not interpretable at that time, are clearly represented and recorded for us and are open to diagnostic discussion from today's point of view.
Die “Selbstbetrachtungen” des Marc Aurel – medizinisch-ethische Betrachtungen des Menschseins
(2013)
In the field of neuroprosthetics, the current state-of-the-art method involves controlling the prosthesis with electromyography (EMG) or electrooculography/electroencephalography (EOG/EEG). However, these systems are both expensive and time consuming to calibrate, susceptible to interference, and require a lengthy learning phase by the patient. Therefore, it is an open challenge to design more robust systems that are suitable for everyday use and meet the needs of patients. In this paper, we present a new concept of complete visual control for a prosthesis, an exoskeleton or another end effector using augmented reality (AR) glasses presented for the first time in a proof-of-concept study. By using AR glasses equipped with a monocular camera, a marker attached to the prosthesis is tracked. Minimal relative movements of the head with respect to the prosthesis are registered by tracking and used for control. Two possible control mechanisms including visual feedback are presented and implemented for both a motorized hand orthosis and a motorized hand prosthesis. Since the grasping process is mainly controlled by vision, the proposed approach appears to be natural and intuitive.
eLetter zum Artikel "Methods of Burial" von X. hiteshbhai, veröffentlicht in Science Vol. ns-14, Issue 346, Seite 207 (doi.org/10.1126/science.ns-14.346.207)
eLetter zum Artikel "Plague Through History" von Nils Chr. Stenseth, veröffentlicht in Science, Vol. 321, Issue 5890, Seite 773-774 (doi.org/10.1126/science.1161496)
A survey in 2000 revealed that only about 30% of the prescriptions in the European pediatric population were on the basis of evidence-based medicine (EbM). Less for radiopharmaceuticals and principally for diagnostics, radiologists throughout Europe are referred to the pediatric guidelines of the European Association of Nuclear Medicine (EANM), as none of the frequently used tracers have been evaluated in clinical trials in the different pediatric subgroups. Following a resolution to address the lack of EbM in children, the European Commission published the Pediatric Regulation EC 1901/2006 and its amendment EC 1902/2006, effective from 2007. This regulation foresees the development of evidence-based medicine in the pediatric population. This is effected through a set of principles like the mandatory pediatric investigation plan (PIP) to be included with the market authorization application (MAA), and the pediatric use market authorization (PUMA) for off-patent pharmaceuticals, and to a very small part radiopharmaceuticals with funding possibilities for pediatric-specific research through the 7th Framework Programme (7FP) of the European Union.
This is a commentary note on the situation of functional neuroimaging in psychiatry. With this we would like to encourage psychiatrists and the journal editors of psychiatric and related journals to at least rethink the role of functional neuroimaging in this discipline and use these imaging techniques in their various aspects of clinical diagnosis and therapy regimens,respectively.