Refine
Year of publication
Document Type
- Conference Proceeding (245)
- Article (reviewed) (135)
- Article (unreviewed) (102)
- Part of a Book (35)
- Book (27)
- Other (18)
- Patent (9)
- Contribution to a Periodical (7)
- Letter to Editor (5)
- Doctoral Thesis (1)
- Report (1)
Language
- English (384)
- German (196)
- Multiple languages (2)
- Other language (1)
- Russian (1)
- Spanish (1)
Has Fulltext
- no (585) (remove)
Keywords
- Kommunikation (16)
- Eingebettetes System (8)
- Intelligentes Stromnetz (8)
- Mathematik (8)
- Brennstoffzelle (7)
- CST (7)
- Energieversorgung (7)
- HF-Ablation (7)
- Herzkrankheit (7)
- Abtragung (6)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (585) (remove)
The Division Industrial Chemistry of the Swiss Chemical Society organizes periodically a two-day event for the post-graduate education of its members. This event is known as the Freiburger Symposium. This year it focussed on sustainable chemical production. The twelve talks covered the following aspects: ethical needs for sustainability standards, the required, attained, and yet to be attained sustainability goals in chemical industry. Diverse case studies showed the highly developed awareness about the sustainability issue within the chemical community.
Im Jahr 1504 verlor der deutsche Ritter Gottfried („Götz“) von Berlichingen seine
rechte Hand. Schon während seiner Genesung dachte er daran, die Hand zu ersetzen,
und beauftragte bald darauf die erste Handprothese, die sogenannte „Eiserne Hand“.
Jahre später wurde die aufwändigere zweite „Eiserne Hand“ gebaut. Wir haben die erste
Prothese auf der Basis früherer Literaturdaten von
Quasigroch (1982) mit Hilfe von 3-D
Computer-Aided Design (CAD) rekonstruiert. Dazu mussten einige Abmessungen angepasst
und ein paar Annahmen für das CAD-Modell gemacht werden. Die historische passive
Prothese des Götz von Berlichingen ist für die moderne Neuroprothetik interessant, da sie
eine Alternative zu komplexen invasiven Brain-Machine-Interface-Konzepten darstellen
könnte, wo diese Konzepte nicht notwendig, möglich oder vom Patienten gewünscht sind.
In this study, we tested the function of a replica of the over 500-year-old original of the
famous Franconian Imperial Knight Götz von Berlichingen’s first “iron hand”, which we
reconstructed by computer-aided design (CAD) and recently printed using a multi-material
3D printer. In different everyday tasks, the artificial hand prosthesis proved to be remarkably
helpful. Thus, the hand could hold a wine glass, some grapes, or a smartphone. With a
suitable pencil, even writing was possible without any problem. Although for all these
functions the healthy other hand was necessary to assist at the beginning, the artificial hand
is an astonishing mechanical aid with many possibilities. Therefore, in certain cases, the
non-invasive approach of a passive mechanical hand replacement, which is an individual,
quick and cheap solution due to modern 3D printing, may always be worth considering
also for today’s requirements.
Auf Grundlage der Computer-Aided-Design (CAD)-rekonstruierten ersten „Eisernen
Hand“ des Götz von Berlichingen wird ein umgebautes, controllergesteuertes sensomotorisches Fingersystem auf seine Funktionalität beim Greifen von unterschiedlichen
Gegenständen beschrieben und geprüft. Die elektronischen Finger, die den „Pinzettengriff“
nachahmen und automatisch bei dem zuvor eingestellten Anpressdruck abschalten,
bewiesen eine bemerkenswerte Alltagstauglichkeit. Das vorgestellte Grundkonzept könnte
eine Alternative bei der Entwicklung einfacher und kostengünstiger, aber dennoch gut
einsatzfähiger bionischer Hände sein und zeigt einmal mehr, wie historische Ideen in die
Gegenwart transferiert werden können.
This work describes a camera-based method for the calibration of optical See-Through Glasses (STGs). A new calibration technique is introduced for calibrating every single display pixel of the STGs in order to overcome the disadvantages of a parametric model. A non-parametric model compared to the parametric one has the advantage that it can also map arbitrary distortions. The new generation of STGs using waveguide-based displays [5] will have higher arbitrary distortions due to the characteristics of their optics. First tests show better accuracies than in previous works. By using cameras which are placed behind the displays of the STGs, no error prone user interaction is necessary. It is shown that a high accuracy tracking device is not necessary for a good calibration. A camera mounted rigidly on the STGs is used to find the relations between the system components. Furthermore, this work elaborates on the necessity of a second subsequent calibration step which adapts the STGs to a specific user. First tests prove the theory that this subsequent step is necessary.
A benchmark analysis of Long Range (LoRaTM) Communication at 2.45 Ghz for safety applications
(2014)
This paper describes the use of the single-linkage
hierarchical clustering method in outlier detection for
manufactured metal work pieces. The main goal of the study is
to group defects that occur 5 mm into a work piece from the
edge, i.e., the border of the metal work piece. The goal is to
remove defects outside the area of interest as outliers.
According to the assumptions made for the performance
criteria, the single-linkage method has achieved better results
compared to other agglomeration methods.
Multi-phase management is crucial for performance and durability of electrochemical cells such as batteries and fuel cells. In this paper we present a generic framework for describing the two-dimensional spatiotemporal evolution of gaseous, liquid and solid phases, as well as their interdependence with interfacial (electro-)chemistry and microstructure in a continuum description. The modeling domain consists of up to seven layers (current collectors, channels, electrodes, separator/membrane), each of which can consist of an arbitrary number of bulk phases (gas, liquid, solid) and connecting interfaces (two-phase or multi-phase boundaries). Bulk and interfacial chemistry is described using global or elementary kinetic reactions. Multi-phase management is coupled to chemistry and to mass and charge transport within bulk phases. The functionality and flexibility of this framework is demonstrated using four application areas in the context of post-lithium-ion batteries and fuel cells, that is, lithium-sulfur (Li-S) cells, lithium-oxygen (Li-O) cells, solid oxide fuel cells (SOFC) and polymer electrolyte membrane fuel cells (PEFC). The results are compared to models available in literature and properties of the generic framework are discussed.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
A highly scalable IEEE802.11p communication and localization subsystem for autonomous urban driving
(2013)
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.
A Localization System Using Inertial Measurement Units from Wireless Commercial Handheld Devices
(2013)
The M-Bus protocol (EN13757) is in widespread use for metering applications within home area and neighborhood area networks, but lacks a strict specification. This may lead to incompatibilities in real-life installations and to problems in the deployment of new M-Bus networks. This paper presents the development of a novel testbed to emulate physical Metering Bus (M-Bus) networks with different topologies and to allow the flexible verification of real M-Bus devices in real-world scenarios. The testbed is designed to support device manufacturers and service technicians in test and analysis of their devices within a specific network before their installation. The testbed is fully programmable, allowing flexible changes of network topologies, cable lengths and types. Itis easy to use, as only the master and the slaves devices have to be physically connected. This allows to autonomously perform multiple tests, including automated regression tests. The testbed is available to other researchers and developers. We invite companies and research institutions to use this M-Bus testbed to increase the common knowledge and real-world experience.
A novel approach of a testbed for embedded networking nodes has been conceptualized and implemented. It is based on the use of virtual nodes in a PC environment, where each node executes the original embedded code. Different nodes are running in parallel and are connected via so-called virtual interfaces. The presented approach is very efficient and allows a simple description of test cases without the need of a network simulator. Furthermore, it speeds up the process of developing new features.
A printed electronics technology has the advantage of additive and extremely low-cost fabrication compared with the conventional silicon technology. Specifically, printed electrolyte-gated field-effect transistors (EGFETs) are attractive for low-cost applications in the Internet-of-Things domain as they can operate at low supply voltages. In this paper, we propose an empirical dc model for EGFETs, which can describe the behavior of the EGFETs smoothly and accurately over all regimes. The proposed model, built by extending the Enz-Krummenacher-Vittoz model, can also be used to model process variations, which was not possible previously due to fixed parameters for near threshold regime. It offers a single model for all the operating regions of the transistors with only one equation for the drain current. Additionally, it models the transistors with a less number of parameters but higher accuracy compared with existing techniques. Measurement results from several fabricated EGFETs confirm that the proposed model can predict the I-V more accurately compared with the state-of-the-art models in all operating regions. Additionally, the measurements on the frequency of a fabricated ring oscillator are only 4.7% different from the simulation results based on the proposed model using values for the switching capacitances extracted from measurement data, which shows more than 2× improvement compared with the state-of-the-art model.
A Survey of Channel Measurements and Models for Current and Future Railway Communication Systems
(2016)
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
Die Kenntnis der Messunsicherheit verbessert die Aussagekraft von Einsatzhärtungstiefe-Messungen. Ausgehend von der Definition in der DIN EN ISO 2639:2002 wird unter Anwendung des „Guide to the Expression of Uncertainty in Measurement“ die Messunsicherheit abgeschätzt. Dazu werden die Einflüsse der Härteprüfung, der Positionierung der Prüfpunkte und der Probe berücksichtigt. Das Verfahren wird an zwei Beispielen angewendet: Zunächst werden die gemäß Norm zulässigen Toleranzen vollständig ausgenutzt, anschließend die Unsicherheit eines automatisierten Härteprüfers experimentell ermittelt. In beiden Fällen dominiert der Probeneinfluss das Ergebnis.
This paper gives an overview of the implementation of an Active Noise Control system on the TMS320C6713 Digital Signal Processor from Texas Instruments in the Digital Signal Processing Lab at Hochschule Offenburg, Germany. This system is implemented considering some non-ideal environmental conditions on a real system instead of being limited to computer simulations. Changes over time on the physical acoustical path as well as reverberation and variation on the power of the reference signal can strongly degrade the performance of the system or even lead to instability. In order to try to minimize these effects, the Active Noise Control system was designed to support a fast and easy implementation and evaluation of different algorithms on the DSP in real-time. In Section 1 a brief introduction about active noise control system is given and in section 2 the basic algorithm is described. In section 3 the implementation of the system is described and in section 4 some final considerations are given.
The iSign project started in 2000 as a web-based laboratory setting for students of electrical engineering. In the meantime it has broadened into a heterogeneous learning environment offering learning material, adaptive user settings and access to a simulation tool. All these offerings can be accessed via web and wireless by different clients, such as PCs, PDAs and mobile phones. User adaptive systems offer unique and personalised environment for every learner and therefore are a very important aspect of modern e-learning systems. The iSign project aims to personalise the content structure based on the learner's behaviour, content pattern, policies, and system environment. The second aspect of the recent research and development within this project is the generation of suitable content and presentation for different clients. This generation is based additionally on the user preferences in order to obtain the desirable presentation for a given device. New, valuable features are added to the mobile application, empowering the user not only to control the simulation process with his mobile device but also to input data, view the simulation's output and evaluate the results. Experiences with students have helped to improve functionality and look-and-feel whilst using the iSign system. Our goal is to provide unconstrained, continuous and personalised access to the laboratory settings and learning material everywhere and at anytime with different devices.
The separation of nitrogen and methane from hydrogen-rich mixtures is systematically investigated on a recently developed binder-free zeolite 5A. For this adsorbent, the present work provides a series of experimental data on adsorption isotherms and breakthrough curves of nitrogen and methane, as well as their mixtures in hydrogen. Isotherms were measured at temperatures of 283–313 K and pressures of up to 1.0 MPa. Breakthrough curves of CH4, N2, and CH4/N2 in H2 were obtained at temperatures of 300–305 K and pressures ranging from 0.1 to 6.05 MPa with different feed concentrations. An LDF-based model was developed to predict breakthrough curves using measured and calculated data as inputs. The number of parameters and the use of correlations were restricted to focus on the importance of measured values. For the given assumptions, the results show that the model predictions agree satisfactorily with the experiments under the different operating conditions applied.
Agile Business Intelligence als Beispiel für ein domänenspezifisch angepasstes Vorgehensmodell
(2016)
This paper deals with the detection and segmentation of clouds on high-dynamic-range (HDR) images of the sky as well as the calculation of the position of the sun at any time of the year. In order to predict the movement of clouds and the radiation of the sun for a short period of time, the clouds thickness and position have to be known as precisely as possible. Consequently, the segmentation algorithm has to provide satisfactory results regardless of different weather, illumination and climatic conditions. The principle of the segmentation is based on the classification of each pixel as a cloud or as a sky. This classification is usually based on threshold methods, since these are relatively fast to implement and show a low computational burden. In order to predict if and when the sun will be covered by clouds, the position of the sun on the images has to be determined. For this purpose, the zenith and azimuth angles of the sun are determined and converted into XY coordinates.
n this work a mathematical model for describing the performance of lithium-ion battery electrodes consisting of porous active material particles is presented. The model represents an extension of the Newman-type model, accounting for the agglomerate structure of the active material particles, here Li(Ni1/3Co1/3Mn1/3)O2 (NCM) and Li(Ni1/3Co1/3Al1/3)O2 (NCA). To this goal, an additional pore space is introduced on the active material level. The space is filled with electrolyte and a charge-transfer reaction takes place at the liquid-solid interface within the porous active material particles. Volume-averaging techniques are used to derive the model equations. A local Thiele modulus is defined and provides an insight into the potentially limiting factors on the active material level. The introduction of a liquid-phase ion transport within the active material reduces the overall transport losses, while the additional active surface area within the agglomerate lowers the charge-transfer resistance. As a consequence, calculated discharge capacities are higher for particles modeled as agglomerates. This finding is more pronounced in the case of high C-rates
The communication system of a large-scale concentrator photovoltaic power plant is very challenging. Manufacturers are building power plants having thousands of sun tracking systems equipped with communication and distributed over a wide area. Research is necessary to build a scalable communication system enabling modern control strategies. This poster abstract describes the ongoing work on the development of a simulation model of such power plants in OMNeT++. The model uses the INET Framework to build a communication network based on Ethernet. First results and problems of timing and data transmission experiments are outlined. The model enables research on new communication and control approaches to improve functionality and efficiency of power plants based on concentrator photovoltaic technology.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
(2018)
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical ventricular desynchronization with transthoracic and transesophageal signal averaging electrocardiography in HF, to better select patients for CRT.
Methods: 13 HF patients (age 68 ± 10 years; 2 females, 11 males) with New York Heart Association (NYHA) class 2.8 ± 0.5, 28.6 ± 12.6 % LV ejection fraction and 155 ± 24 ms QRS duration (QRSD) were analysed with transthoracic and transesophageal electrocardiogram recording and novel National Intruments LabView 2009 signal averaging software. Esophageal TO Osypka catheter was perorally applied to the esophagus and placed in the position of maximum LV de-flection. The 0.05-Hz high-pass filtered surface electrocardiogram and the 10-Hz high-pass filtered bipolar transesophageal electrocardiogram were recorded with Bard EP-System and 1000-Hz sampling rate.
Results: Transesophageal LV electrogram recording was possible in all HF patients (n=13). Transesophageal interventricular conduction delay (IVCD) was 51 ± 19 ms and measured between the earliest onset of QRS in the 12-channel surface electrocardiogram and the onset of the LV deflection in the transesophageal electrocardiogram. Transesophageal intra-left ventricular delay (LVCD) was 90 ± 16 ms and measured between the onset and offset of the LV deflection in the transesophageal electrocardiogram. QRSD to transesophageal IVCD ratio was 3.43 ± 1.31 ms, QRSD to transesophageal LVCD ratio was 1.75 ± 0.28 ms and QRSD was evaluated between onset and offset of QRS signal in the 12-channel surface electrocardiogram.
Conclusion: Determination of IVCD, LVCD, QRSD-to-IVCD-ratio and QRSD-to-LVCD-ratio by transesophageal LV electrogram recording with LabView 2009 signal averaging technique may be useful parameters of ventricular desynchronisation to improve patient selection for CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy for heart failure (HF) patients with ventricular desynchronisation and reduced left ventricular (LV) function. The aim of this study was to evaluate preejection period (PEP) and left ventricular ejection time (LVET) with transthoracic signal averaging impedance and electrocardiography in HF patients with and without BV pacing.
Methods: 10 HF patients (age 68.9 ± 8 years; 2 females, 9 males) with New York Heart Association (NYHA) class 2,9 ± 0.5, 30.9 ± 10.5 % LV ejection fraction and 159.4 ± 22.9 ms QRS duration were analysed with transthoracic impedance and electrocardiography (Cardioscreen Medis, Ilmenau, Germany) and novel National Intruments LabView 2009 signal averaging software. One day after BV pacing device implantation, AV and VV delays were optimized by transthoracic impedance cardiography and stroke volume (SV) and cardiac output (CO) were gained by Cardioscreen.
Results: Transthoracic impedance and electrocardiography AV and VV delay opimization was possible in all HF patients with BV pacing devices (n= 10). PEP was 154 ± 24ms without BV pacing and measured between onset of QRS in the surface electrocardiogram and onset of ventricular deflection in the impedance cardiogram. LVET was 342 ± 65ms without BV pacing and measured between onset and offset of ventricular deflection in the impedance cardiogram. The use of optimal AV and VV delay BV pacing resulted in improvement of SV from 64.1 ± 26.5 ml to 94.1 ± 33.96 ml (P < 0.05) and CO from 4.05 ± 1.36 l/min to 6.44 ± 1.56 l/min (P < 0.05).
Conclusion: PEP and LVET may be useful parameters of ventricular Desynchronisation. AV and VV delay optimized BV pacing improve SV and CO. Impedance and electrocardiography with LabView 2009 signal averaging may be a simple and useful technique to optimize CRT.