Refine
Document Type
- Conference Proceeding (64)
- Article (reviewed) (7)
- Article (unreviewed) (5)
- Part of a Book (3)
- Book (1)
- Report (1)
Has Fulltext
- no (81) (remove)
Keywords
- Eingebettetes System (8)
- Kommunikation (4)
- Applikation (2)
- Datensicherung (2)
- Messtechnik (2)
- Netzwerk (2)
- Sensortechnik (2)
- 6LoWPAN (1)
- Bloom filters (1)
- Cascading Style Sheets (1)
Institute
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (81) (remove)
The Internet of Things (IoT) application has becoming progressively in-demand, most notably for the embedded devices (ED). However, each device has its own difference in computational capabilities, memory usage, and energy resources in connecting to the Internet by using Wireless Sensor Networks (WSNs). In order for this to be achievable, the WSNs that form the bulk of the IoT implementation requires a new set of technologies and protocol that would have a defined area, in which it addresses. Thus, IPv6 Low Power Area Network (6LoWPAN) was designed by the Internet Engineering Task Force (IETF) as a standard network for ED. Nevertheless, the communication between ED and 6LoWPAN requires appropriate routing protocols for it to achieve the efficient Quality of Service (QoS). Among the protocols of 6LoWPAN network, RPL is considered to be the best protocol, however its Energy Consumption (EC) and Routing Overhead (RO) is considerably high when it is implemented in a large network. Therefore, this paper would propose the HRPL to enchance the RPL protocol in reducing the EC and RO. In this study, the researchers would present the performance of RPL and HRPL in terms of EC, Control traffic Overhead (CTO) and latency based on the simulation of the 6LoWPAN network in fixed environment using COOJA simulator. The results show HRPL protocol achieves better performance in all the tested topology in terms of EC and CTO. However, the latency of HRPL only improves in chain topology compared with RPL. We found that further research is required to study the relationship between the latency and the load of packet transmission in order to optimize the EC usage.
The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.
When designing and installing Indoor Positioning Systems, several interrelated tasks have to be solved to find an optimum placement of the Access Points. For this purpose, a mathematical model for a predefined number of access points indoors is presented. Two iterative algorithms for the minimization of localization error of a mobile object are described. Both algorithms use local search technique and signal level probabilities. Previously registered signal strengths maps were used in computer simulation.
The M-Bus protocol (EN13757) is in widespread use for metering applications within home area and neighborhood area networks, but lacks a strict specification. This may lead to incompatibilities in real-life installations and to problems in the deployment of new M-Bus networks. This paper presents the development of a novel testbed to emulate physical Metering Bus (M-Bus) networks with different topologies and to allow the flexible verification of real M-Bus devices in real-world scenarios. The testbed is designed to support device manufacturers and service technicians in test and analysis of their devices within a specific network before their installation. The testbed is fully programmable, allowing flexible changes of network topologies, cable lengths and types. Itis easy to use, as only the master and the slaves devices have to be physically connected. This allows to autonomously perform multiple tests, including automated regression tests. The testbed is available to other researchers and developers. We invite companies and research institutions to use this M-Bus testbed to increase the common knowledge and real-world experience.
A novel approach of a testbed for embedded networking nodes has been conceptualized and implemented. It is based on the use of virtual nodes in a PC environment, where each node executes the original embedded code. Different nodes are running in parallel and are connected via so-called virtual interfaces. The presented approach is very efficient and allows a simple description of test cases without the need of a network simulator. Furthermore, it speeds up the process of developing new features.
We provide a privacy-friendly cloud-based smart metering storage architecture which provides few-instance storage on encrypted measurements by at the same time allowing SQL queries on them. Our approach is most flexible with respect to two axes: on the one hand it allows to apply filtering rules on encrypted data with respect to various upcoming business cases; on the other hand it provides means for a storage-efficient handling of encrypted measurements by applying server-side deduplication techniques over all incoming smart meter measurements. Although the work at hand is purely dedicated to a smart metering architecture we believe our approach to have value for a broader class of IoT cloud storage solutions. Moreover, it is an example for Privacy-by-design supporting the positive-sum paradigm.
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
Institute of Reliable Embedded Systems and Communication Electronics, Offenburg University of Applied Sciences, Germany has developed an automated testing environment, Automated Physical TestBeds (APTB), for analyzing the performance of wireless systems and its supporting protocols. Wireless physical networking nodes can connect to this APTB and the antenna output of this attaches with the RF waveguides. To model the RF environment this RF waveguides then establish wired connection among RF elements like splitters, attenuators and switches. In such kind of set up it’s well possible to vary the path characteristics by altering the attenuators and switches. The major advantage of using APTB is the possibility of isolated, well controlled, repeatable test environment in various conditions to run statistical analysis and even to execute regression tests. This paper provides an overview of the design and implementation of APTB, demonstrates its ability to automate test cases, and its efficiency.
Covert- and side-channels as well as techniques to establish them in cloud computing are in focus of research for quite some time. However, not many concrete mitigation methods have been developed and even less have been adapted and concretely implemented by cloud providers. Thus, we recently conceptually proposed C 3 -Sched a CPU scheduling based approach to mitigate L2 cache covert-channels. Instead of flushing the cache on every context switch, we schedule trusted virtual machines to create noise which prevents potential covert-channels. Additionally, our approach aims on preserving performance by utilizing existing instead of artificial workload while reducing covert-channel related cache flushes to cases where not enough noise has been achieved. In this work we evaluate cache covert-channel mitigation and performance impact of our integration of C 3 -Sched in the XEN credit scheduler. Moreover, we compare it to naive solutions and more competitive approaches.
Real-Time Ethernet has become the major communication technology for modern automation and industrial control systems. On the one hand, this trend increases the need for an automation-friendly security solution, as such networks can no longer be considered sufficiently isolated. On the other hand, it shows that, despite diverging requirements, the domain of Operational Technology (OT) can derive advantage from high-volume technology of the Information Technology (IT) domain. Based on these two sides of the same coin, we study the challenges and prospects of approaches to communication security in real-time Ethernet automation systems. In order to capitalize the expertise aggregated in decades of research and development, we put a special focus on the reuse of well-established security technology from the IT domain. We argue that enhancing such technology to become automation-friendly is likely to result in more robust and secure designs than greenfield designs. Because of its widespread deployment and the (to this date) nonexistence of a consistent security architecture, we use PROFINET as a showcase of our considerations. Security requirements for this technology are defined and different well-known solutions are examined according their suitability for PROFINET. Based on these findings, we elaborate the necessary adaptions for the deployment on PROFINET.
Covert and Side-Channels have been known for a long time due to their versatile forms of appearance. For nearly every technical improvement or change in technology, such channels have been (re-)created or known methods have been adapted. For example the introduction of hyperthreading technology has introduced new possibilities for covert communication between malicious processes because they can now share the arithmetic logical unit (ALU) as well as the L1 and L2 cache which enables establishing multiple covert channels. Even virtualization which is known for its isolation of multiple machines is prone to covert and side-channel attacks due to the sharing of resources. Therefore itis not surprising that cloud computing is not immune to this kind of attacks. Even more, cloud computing with multiple, possibly competing users or customers using the same shared resources may elevate the risk of unwanted communication. In such a setting the ”air gap” between physical servers and networks disappears and only the means of isolation and virtual separation serve as a barrier between adversary and victim. In the work at hand we will provide a survey on weak spots an adversary trying to exfiltrate private data from target virtual machines could exploit in a cloud environment. We will evaluate the feasibility of example attacks and point out possible mitigation solutions if they exist.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
The Thread protocol is a recent development based on 6LoWPAN (IPv6 over IEEE 802.15.4), but with extensions regarding a more media independent approach, which – additionally – also promises true interoperability. To evaluate and analyse the operation of a Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been extended in order to comply with the Thread specification. The implementation covers Mesh Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under routing mechanism based on MAC short addresses. The development has been verified on a virtualization platform and allows dynamical establishment of network topologies based on Thread's partitioning algorithm.
OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.
The increasing number of transistors being clocked at high frequencies of modern microprocessors lead to an increasing power consumption, which calls for an active dynamic thermal management. In a research project a system environment has been developed, which includes thermal modeling of the microprocessor in the board system, a software environment to control the characteristics of the system’s timing behavior, and a modified Linux scheduler, which is enhanced with a prediction controller. Measurement results are shown for this development for a Freescale i.MX6Q quad-core microprocessor.
Embedded Analog Physical Unclonable Function System to Extract Reliable and Unique Security Keys
(2020)
Internet of Things (IoT) enabled devices have become more and more pervasive in our everyday lives. Examples include wearables transmitting and processing personal data and smart labels interacting with customers. Due to the sensitive data involved, these devices need to be protected against attackers. In this context, hardware-based security primitives such as Physical Unclonable Functions (PUFs) provide a powerful solution to secure interconnected devices. The main benefit of PUFs, in combination with traditional cryptographic methods, is that security keys are derived from the random intrinsic variations of the underlying core circuit. In this work, we present a holistic analog-based PUF evaluation platform, enabling direct access to a scalable design that can be customized to fit the application requirements in terms of the number of required keys and bit width. The proposed platform covers the full software and hardware implementations and allows for tracing the PUF response generation from the digital level back to the internal analog voltages that are directly involved in the response generation procedure. Our analysis is based on 30 fabricated PUF cores that we evaluated in terms of PUF security metrics and bit errors for various temperatures and biases. With an average reliability of 99.20% and a uniqueness of 48.84%, the proposed system shows values close to ideal.
Digital networked communications are the key to all Internet-of-Things applications, especially to smart metering systems and the smart grid. In order to ensure a safe operation of systems and the privacy of users, the transport layer security (TLS) protocol, a mature and well standardized solution for secure communications, may be used. We implemented the TLS protocol in its latest version in a way suitable for embedded and resource-constrained systems. This paper outlines the challenges and opportunities of deploying TLS in smart metering and smart grid applications and presents performance results of our TLS implementation. Our analysis shows that given an appropriate implementation and configuration, deploying TLS in constrained smart metering systems is possible with acceptable overhead.
Due to climate change and scarcity of water reservoirs, monitoring and control of irrigation systems is now becoming a major focal area for researchers in Cyber-Physical Systems (CPS). Wireless Sensor Networks (WSNs) are rapidly finding their way in the field of irrigation and play the key role as data gathering technology in the domain of IoT and CPS. They are efficient for reliable monitoring, giving farmers an edge to take precautionary measures. However, designing an energy-efficient WSN system requires a cross-layer effort and energy-aware routing protocols play a vital role in the overall energy optimization of a WSN. In this paper, we propose a new hierarchical routing protocol suitable for large area environmental monitoring such as large-scale irrigation network existing in the Punjab province of Pakistan. The proposed protocol resolves the issues faced by traditional multi-hop routing protocols such as LEACH, M-LEACH and I-LEACH, and enhances the lifespan of each WSN node that results in an increased lifespan of the whole network. We used the open-source NS3 simulator for simulation purposes and results indicate that our proposed modifications result in an average 27.8% increase in lifespan of the overall WSN when compared to the existing protocols.
Die neueste Generation von programmierbaren Logikbausteinen verfügt neben den konfigurierbaren Logikzellen über einen oder mehrere leistungsfähige Mikroprozessoren. In dieser Arbeit wird gezeigt, wie ein bestehendes Zwei-Chip-System auf einen Xilinx Zynq 7000 mit zwei ARM A9-Cores migriert wird. Bei dem System handelt es sich um das „GPS-gestützte Kreisel-system ADMA“ des Unternehmens GeneSys. Die neue Lösung verbessert den Datenaustausch zwischen dem ersten Mikroprozessor zur digitalen Signalverarbeitung und dem zweiten Prozessor zur Ablaufsteuerung durch ein Shared Memory. Für die schnelle und echtzeitfähige Datenübertragung werden zahlreiche hochbitratige Schnittstellengenutzt.
eTPL: An Enhanced Version of the TLS Presentation Language Suitable for Automated Parser Generation
(2017)
The specification of the Transport Layer Security (TLS) protocol defines its own presentation language used for the purpose of semi-formally describing the structure and on-the-wire format of TLS protocol messages. This TLS Presentation Language (TPL) is more expressive and concise than natural language or tabular descriptions, but as a result of its limited objective has a number of deficiencies. We present eTPL, an enhanced version of TPL that improves its expressiveness, flexibility, and applicability to non-TLS scenarios. We first define a generic model that describes the parsing of binary data. Based on this, we propose language constructs for TPL that capture important information which would otherwise have to be picked manually from informal protocol descriptions. Finally, we briefly introduce our software tool etpl-tool which reads eTPL definitions and automatically generates corresponding message parsers in C++. We see our work as a contribution supporting sniffing, debugging, and rapid-prototyping of wired and wireless communication systems.
Exploiting Dissent: Towards Fuzzing-based Differential Black Box Testing of TLS Implementations
(2017)
The Transport Layer Security (TLS) protocol is one of the most widely used security protocols on the internet. Yet do implementations of TLS keep on suffering from bugs and security vulnerabilities. In large part is this due to the protocol's complexity which makes implementing and testing TLS notoriously difficult. In this paper, we present our work on using differential testing as effective means to detect issues in black-box implementations of the TLS handshake protocol. We introduce a novel fuzzing algorithm for generating large and diverse corpuses of mostly-valid TLS handshake messages. Stimulating TLS servers when expecting a ClientHello message, we find messages generated with our algorithm to induce more response discrepancies and to achieve a higher code coverage than those generated with American Fuzzy Lop, TLS-Attacker, or NEZHA. In particular, we apply our approach to OpenssL, BoringSSL, WolfSSL, mbedTLS, and MatrixSSL, and find several real implementation bugs; among them a serious vulnerability in MatrixSSL 3.8.4. Besides do our findings point to imprecision in the TLS specification. We see our approach as present in this paper as the first step towards fully interactive differential testing of black-box TLS protocol implementations. Our software tools are publicly available as open source projects.
Extended Performance Measurements of Scalable 6LoWPAN Networks in an Automated Physical Testbed
(2015)
IPv6 over Low power Wireless Personal Area Networks, also known as 6LoWPAN, is becoming more and more a de facto standard for such communications for the Internet of Things, be it in the field of home and building automation, of industrial and process automation, or of smart metering and environmental monitoring. For all of these applications, scalability is a major precondition, as the complexity of the networks continuously increase. To maintain this growing amount of connected nodes a various 6LoWPAN implementations are available. One of the mentioned was developed by the authors' team and was tested on an Automated Physical Testbed for Wireless Systems at the Laboratory Embedded Systems and Communication Electronics of Offenburg University of Applied Sciences, which allows the flexible setup and full control of arbitrary topologies. It also supports time-varying topologies and thus helps to measure performance of the RPL implementation. The results of the measurements prove an excellent stability and a very good short and long-term performance also under dynamic conditions. In all measurements, there is an advantage of minimum 10% with regard to the average times, like global repair time; but the advantage with reagr to average values can reach up to 30%. Moreover, it can be proven that the performance predictions from other papers are consistent with the executed real-life implementations.
Wireless sensor networks have recently found their way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researchers. Such monitoring applications, in general, don way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researc latency requirements regarding to the energy efficiency. Also a challenge of this application is the network topology as the application should be able to be deployed in very large scale. Nevertheless low power consumption of the devices making up the network must be on focus in order to maximize the lifetime of the whole system. These devices are usually battery-powered and spend most of their energy budget on radio transceiver module. A so-called Wake-On-Radio (WoR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, some designs for integration of WOR into IEEE 802.1.5.4 are to be discussed, providing an overview of trade-offs in energy consumption while deploying the WoR schemes in a monitoring system.
Wireless sensor networks have found their way into a wide range of applications among which environmental monitoring systems have attracted increasing interests of researchers. The main challenges for the applications are scalability of the network size and energy efficiency of the spatially distributed motes. These devices are mostly battery-powered and spend most of their energy budget on the radio transceiver module. A so-called Wake-On-Radio (WOR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, a novel design for integration of WOR into IEEE802.1.5.4 is presented, which flexibly allows trade-offs in energy consumption between sender and receiver station, between real-time capability and energy consumption. For identical behavior, the proposed scheme is significantly more efficient than other schemes, which were proposed in recent publications, while preserving backward compatibility with standard IEEE802.15.4 transceivers.
Formal Description of Use Cases for Industry 4.0 Maintenance Processes Using Blockchain Technology
(2019)
Maintenance processes in Industry 4.0 applications try to achieve a high degree of quality to reduce the downtime of machinery. The monitoring of executed maintenance activities is challenging as in complex production setups, multiple stakeholders are involved. So, full transparency of the different activities and of the state of the machine can only be supported, if these stakeholders trust each other. Therefore, distributed ledger technologies, like Blockchain, can be promising candidates for supporting such applications. The goal of this paper is a formal description of business and technical interactions between non-trustful stakeholders in the context of Industry 4.0 maintenance processes using distributed ledger technologies. It also covers the integration of smart contracts for automated triggering of activities.
The paper describes the hardware and software architecture of the developed multi MEMS sensor prototype module, consisting of ARM Cortex M4 STM32F446 microcontroller unit, five 9-axis inertial measurement units MPU9255 (3D accelerometer, 3D gyroscope, 3D magnetometer and temperature sensor) and a BMP280 barometer. The module is also equipped with WiFi wireless interface (Espressif ESP8266 chip). The module is constructed in the form of a truncated pyramid. Inertial sensors are mounted on a special basement at different angles to each other to eliminate hardware sensors drifts and to provide the capability for self-calibration. The module fuses information obtained from all types of inertial sensors (acceleration, rotation rate, magnetic field and air pressure) in order to calculate orientation and trajectory. It might be used as an Inertial Measurement Unit, Vertical Reference Unit or Attitude and Heading Reference System.
Wireless synchronization of industrial controllers is a challenging task in environments where wired solutions are not practical. The best solutions proposed so far to solve this problem require pretty expensive and highly specialized FPGA-based devices. With this work we counter the trend by introducing a straightforward approach to synchronize a fairly cheap IEEE 802.11 integrated wireless chip (IWC) with external devices. More specifically we demonstrate how we can reprogram the software running in the 802.11 IWC of the Raspberry Pi 3B and transform the receiver input potential of the wireless transceiver into a triggering signal for an external inexpensive FPGA. Experimental results show a mean-square synchronization error of less than 496 ns, while the absolute synchronization error does not exceed 6 μs. The jitter of the output signal that we obtain after synchronizing the clock of the external device did not exceed 5.2 μs throughout the whole measurement campaign. Even though we do not score new records in term of accuracy, we do in terms of complexity, cost, and availability of the required components: all these factors make the proposed technique a very promising of the deployment of large-scale low-cost automation solutions.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things (IoT). Whereas the lower layers (IEEE802.15.4 and 6LoWPAN) are already well defined and consolidated with regard to frame formats, header compression, routing protocols and commissioning procedures, there is still an abundant choice of possibilities on the application layer. Currently, various groups are working towards standardization of the application layer, i.e. the ETSI Technical Committee on M2M, the IP for Smart Objects (IPSO) Alliance, Lightweight M2M (LWM2M) protocol of the Open Mobile Alliance (OMA), and OneM2M. This multitude of approaches leaves the system developer with the agony of choice. This paper selects, presents and explains one of the promising solutions, discusses its strengths and weaknesses, and demonstrates its implementation.
Wireless Sensor Networks (WSN) have emerged as interesting topic in the research community due to its manifold applications. One of the main challenges of this field is the energy consumption of the nodes, which typically is quite restricted due to the required lifetime of such WSNs. To solve that problem several energy-saving MAC protocols have been developed so far. One of them recently presented by the authors is the so-called SmartMAC as an extension to the IEEE802.15.4 standard. In this paper, we present the implementation details of the porting of the SmartMAC protocol to the discrete event network simulator NS3. We develop this module for NS3 to simulate the performance, multi node execution, and multi node configuration. Along with this model, we also present an energy model for the evaluation of the energy consumption. The current implementation in NS3 is based on the LR-WPAN (Low-Rate Wireless Personal Area Networks) as specified by the IEEE802.15.4 (2006) standard. The simulation results show that the SmartMAC with its sleep and wake-up mechanisms for the transceivers, is significantly more efficient than the current NS3 MAC (Medium Access Control) scheme.
The Datagram Transport Layer Security (DTLS) protocol has been designed to provide end-to-end security over unreliable communication links. Where its connection establishment is concerned, DTLS copes with potential loss of protocol messages by implementing its own loss detection and retransmission scheme. However, the default scheme turns out to be suboptimal for links with high transmission error rates and low data rates, such as wireless links in electromagnetically harsh industrial environments. Therefore, in this paper, as a first step we provide an analysis of the standard DTLS handshake's performance under such adverse transmission conditions. Our studies are based on simulations that model message loss as the result of bit transmission errors. We consider several handshake variants, including endpoint authentication via pre-shared keys or certificates. As a second step, we propose and evaluate modifications to the way message loss is dealt with during the handshake, making DTLS deployable in situations which are prohibitive for default DTLS.
Ultra wide band (UWB) signals are well suited both for short-range wireless communication and for high-precision localization applications. Channel impulse response (CIR) analysis in UWB systems is a major element in localization estimation. In this paper, practical aspects of CIR are presented. I.e. a technique for the construction of the accumulated echo-gram of a multipath delayed signal is proposed. Decawave hardware was used to demonstrate the technique of analysis of fine structure of signals with a sub-nanosecond resolution. Temporal stability, reliability and two-way characteristics of such echo-grams are discussed as well. The results of using two EVK1000 radio modules as a radar installation to detect a target in indoor environments prove that a low cost UWB intrusion detection and through-the-wall-vision systems might be developed using the proposed technique.
The Bluetooth community is in the process to develop mesh technology. This is highly promising as Bluetooth is widely available in Smart Phones and Tablet PCs, allowing an easy access to the Internet of Things. In this paper work, we investigate the performance of Bluetooth enabled mesh networking that we performed to identify the strengths and weaknesses. A demonstrator for this protocol has been implemented by using the Fruity Mesh protocol implementation. Extensive test cases have been executed to measure the performance, the reliability, the power consumption and the delay. For this, an Automated Physical Testbed (APTB), which emulates the physical channels has been used. The results of these measurements are considered useful for the real implementation of Bluetooth; not only for home and building automation, but also for industrial automation.
IPv6 over LoRaWAN™
(2016)
Although short-range wireless communication explicitly targets local and regional applications, range continues to be a highly important issue. The range directly depends on the so-called link budget, which can be increased by the choice of modulation and coding schemes. The recent transceiver generation in particular comes with extensive and flexible support for software-defined radio (SDR). The SX127× family from Semtech Corp. is a member of this device class and promises significant benefits for range, robust performance, and battery lifetime compared to competing technologies. This contribution gives a short overview of the technologies to support Long Range (LoRa™) and the corresponding Layer 2 protocol (LoRaWAN™). It particularly describes the possibility to combine the Internet Protocol, i.e. IPv6, into LoRaWAN™, so that it can be directly integrated into a full-fledged Internet of Things (IoT). The proposed solution, which we name 6LoRaWAN, has been implemented and tested; results of the experiments are also shown in this paper.
Eine kontinuierliche Überwachung von Ethernet-Leitungne beugt Maschinenausfällen in der Industrie vor. Aktuell fehlen jedoch geiegnete Methoden, um diese Überwachung flächendeckend durchzuführen. Im Projekt Ko²SiBus wurde deshalb ein kostengünstiges Verfahren zur kontinuierlichen Überwachung von Ethernet-Leitungen entwickelt.
The excessive control signaling in Long Term Evolution networks required for dynamic scheduling impedes the deployment of ultra-reliable low latency applications. Semi-persistent scheduling was originally designed for constant bit-rate voice applications, however, very low control overhead makes it a potential latency reduction technique in Long Term Evolution. In this paper, we investigate resource scheduling in narrowband fourth generation Long Term Evolution networks through Network Simulator (NS3) simulations. The current release of NS3 does not include a semi-persistent scheduler for Long Term Evolution module. Therefore, we developed the semi-persistent scheduling feature in NS3 to evaluate and compare the performance in terms of uplink latency. We evaluate dynamic scheduling and semi-persistent scheduling in order to analyze the impact of resource scheduling methods on up-link latency.
The next generation cellular networks are expected to improve reliability, energy efficiency, data rate, capacity and latency. Originally, Machine Type Communication (MTC) was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc., but there is additional demand around applications with low latency requirements, like industrial automation, driver-less cars, and so on. Improvements are required in 4G Long Term Evolution (LTE) networks towards the development of next generation cellular networks for providing very low latency and high reliability. To this end, we present an in-depth analysis of parameters that contribute to the latency in 4G networks along with a description of latency reduction techniques. We implement and validate these latency reduction techniques in the open-source network simulator (NS3) for narrowband user equipment category Cat-Ml (LTE-M) to analyze the improvements. The results presented are a step towards enabling narrowband Ultra Reliable Low Latency Communication (URLLC) networks.
Enabling ultra-low latency is one of the major drivers for the development of future cellular networks to support delay sensitive applications including factory automation, autonomous vehicles and tactile internet. Narrowband Internet of Things (NB-IoT) is a 3 rd Generation Partnership Project (3GPP) Release 13 standardized cellular network currently optimized for massive Machine Type Communication (mMTC). To reduce the latency in cellular networks, 3GPP has proposed some latency reduction techniques that include Semi Persistent Scheduling (SPS) and short Transmission Time Interval (sTTI). In this paper, we investigate the potential of adopting both techniques in NB-IoT networks and provide a comprehensive performance evaluation. We firstly analyze these techniques and then implement them in an open-source network simulator (NS3). Simulations are performed with a focus on Cat-NB1 User Equipment (UE) category to evaluate the uplink user-plane latency. Our results show that SPS and sTTI have the potential to greatly reduce the latency in NB-IoT systems. We believe that both techniques can be integrated into NB-IoT systems to position NB-IoT as a preferred technology for low data rate Ultra-Reliable Low-Latency Communication (URLLC) applications before 5G has been fully rolled out.
Legacy industrial communication protocols are proved robust and functional. During the last decades, the industry has invented completely new or advanced versions of the legacy communication solutions. However, even with the high adoption rate of these new solutions, still the majority industry applications run on legacy, mostly fieldbus related technologies. Profibus is one of those technologies that still keep on growing in the market, albeit a slow in market growth in recent years. A retrofit technology that would enable these technologies to connect to the Internet of Things, utilize the ever growing potential of data analysis, predictive maintenance or cloud-based application, while at the same time not changing a running system is fundamental.
Vehicle-to-Everything (V2X) communication promises improvements in road safety and efficiency by enabling low-latency and reliable communication services for vehicles. Besides using Mobile Broadband (MBB), there is a need to develop Ultra Reliable Low Latency Communications (URLLC) applications with cellular networks especially when safety-related driving applications are concerned. Future cellular networks are expected to support novel latencysensitive use cases. Many applications of V2X communication, like collaborative autonomous driving requires very low latency and high reliability in order to support real-time communication between vehicles and other network elements. In this paper, we classify V2X use-cases and their requirements in order to identify cellular network technologies able to support them. The bottleneck problem of the medium access in 4G Long Term Evolution(LTE) networks is random access procedure. It is evaluated through simulations to further detail the future limitations and requirements. Limitations and improvement possibilities for next generation of cellular networks are finally detailed. Moreover, the results presented in this paper provide the limits of different parameter sets with regard to the requirements of V2X-based applications. In doing this, a starting point to migrate to Narrowband IoT (NB-IoT) or 5G - solutions is given.
The Transport Layer Security (TLS) protocol is a cornerstone of secure network communication, not only for online banking, e-commerce, and social media, but also for industrial communication and cyber-physical systems. Unfortunately, implementing TLS correctly is very challenging, as becomes evident by considering the high frequency of bugfixes filed for many TLS implementations. Given the high significance of TLS, advancing the quality of implementations is a sustained pursuit. We strive to support these efforts by presenting a novel, response-distribution guided fuzzing algorithm for differential testing of black-box TLS implementations. Our algorithm generates highly diverse and mostly-valid TLS stimulation messages, which evoke more behavioral discrepancies in TLS server implementations than other algorithms. We evaluate our algorithm using 37 different TLS implementations and discuss―by means of a case study―how the resulting data allows to assess and improve not only implementations of TLS but also to identify underspecified corner cases. We introduce suspiciousness as a per-implementation metric of anomalous implementation behavior and find that more recent or bug-fixed implementations tend to have a lower suspiciousness score. Our contribution is complementary to existing tools and approaches in the area, and can help reveal implementation flaws and avoid regression. While being presented for TLS, we expect our algorithm's guidance scheme to be applicable and useful also in other contexts. Source code and data is made available for fellow researchers in order to stimulate discussions and invite others to benefit from and advance our work.