Refine
Year of publication
- 2013 (42) (remove)
Document Type
- Conference Proceeding (42) (remove)
Keywords
- Energieversorgung (3)
- Kommunikation (3)
- Brennstoffzelle (2)
- Herzkrankheit (2)
- Konstruktion (2)
- Messung (2)
- Produktion (2)
- Roboter (2)
- Sensortechnik (2)
- Synchronisierung (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (30)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (7)
- INES - Institut für Energiesystemtechnik (6)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (4)
- Fakultät Medien und Informationswesen (M+I) (2)
- IUAS - Institute for Unmanned Aerial Systems (1)
The paper proposes a system architecture for charging infrastructure that serves the requirements of future fleets of shared-use electric vehicles in urban scenarios. The focus of the development is on the interfaces to central stakeholders such as mobility service providers, distribution network operators and utilities. The main concept of the proposed system is the adherence to a stringent resource-oriented design approach, following the design principles of the Representational State Transfer (REST) architectural software style for distributed systems. This design approach is used from the cloud-based services down to the implementation of the charging infrastructure's control algorithms. Focusing on the resources of the various entities simplifies the implementation of their interactions, compared to the explicit declaration of services that are available. The system design ensures that the charging infrastructure is open to all users and generates a benefit beyond basic charging operations. Integration in emerging smart markets is done via open web-based interfaces. These allow for the generation of an added value of concrete services for shared-use electric mobility. A link to the field of grid operation is proposed using the ISO/IEC 61850 telecontrol standard. The smart meter capabilities of the charging stations can be used to gain additional information on the current state of the distribution grid. As an exemplary service a load management service for a fleet of shared-use electric vehicles is going to be implemented.
In this paper the fatigue life of three cast iron materials, namely EN-GJS-700, EN-GJV-450 and EN-GJL-250, is predicted for combined thermomechanical fatigue and high cycle fatigue loading. To this end, a mechanism-based model is used, which is based on microcrack growth. The model considers crack growth due to low frequency loading (thermomechanical and low cycle fatigue) and due to high cycle fatigue. To determine the model parameters for the cast iron materials, fatigue tests are performed under combined loading and crack growth is measured at room temperature using the replica technique. Superimposed high cycle fatigue leads to an accelerated crack growth as soon as a critical crack length and thus the threshold stress intensity factor is exceeded. The model takes this effect into account and predicts the fatigue lives of all cast iron materials investigated under combined loadings very well.
A Localization System Using Inertial Measurement Units from Wireless Commercial Handheld Devices
(2013)
A highly scalable IEEE802.11p communication and localization subsystem for autonomous urban driving
(2013)
Transösophageales interventrikuläres Delay bei Vorhofflimmern und kardialer Resynchronisation
(2013)
Die transösophageale linksventrikuläre Elektrokardiographie ermöglicht die Evaluierung der elektrischen ventrikulären Desynchronisation im Rahmen der kardialen Resynchronisationstherapie der Herzinsuffizienz. Das Ziel der Untersuchung besteht in der präoperativen Abschätzung des transösophagealen interventrikulären Delays bei Vorhofflimmern und kardialer Resynchronisationstherapie. Bei Patienten mit Vorhofflimmern, Herzinsuffizienz New York Heart Association Klasse 3,0 ± 0,2 und QRS-Dauer 159,6 ± 23,9 ms wurde das fokusierte transösophageale linksventrikuläre EKG abgeleitet. Die kardiale Resynchronisationstherapie Responder QRS-Dauer korrelierte mit dem transösophagealen interventrikulären Delay bei Vorhofflimmern.
Das Ausmaß der elektrischen ventrikulären Desynchronisation bei reduzierter linksventrikulärer Funktion ist von Bedeutung für den Erfolg der Resynchronisationstherapie der Herzinsuffizienz mit biventrikulärer Stimulation. Das Ziel der Untersuchung besteht in der nichtinvasiven Messung der elektrischen inter-ventrikulären Desynchronisation mit und ohne ischämische Herzerkrankung bei kardialen Resynchronisationstherapie Respondern. Bei Patienten mit 25,3 ± 7,3 % reduzierter linksventrikulärer Ejektionsfraktion und 166,9 ± 38,5 ms QRS-Dauer wurde das transösophageale linksventrikuläre EKG abgeleitet. Die QRS-Dauer korrelierte mit dem interventrikulären und links-ventrikulären Delay bei Resynchronisationstherapie Respondern mit nicht-ischämischer Herzerkrankung.
In the dual membrane fuel cell (DM-Cell), protons formed at the anode and oxygen ions formed at the cathode migrate through their respective dense electrolytes to react and form water in a porous composite layer called dual membrane (DM). The DM-Cell concept was experimentally proven (as detailed in Part I of this paper). To describe the electrochemical processes occurring in this novel fuel cell, a mathematical model has been developed which focuses on the DM as the characteristic feature of the DM-Cell. In the model, the porous composite DM is treated as a continuum medium characterized by effective macro-homogeneous properties. To simulate the polarization behavior of the DM-Cell, the potential distribution in the DM is related to the flux of protons and oxygen ions in the conducting phases by introducing kinetic and transport equations into charge balances. Since water pressure may affect the overall formation rate, water mass balances across the DM and transport equations are also considered. The satisfactory comparison with available experimental results suggests that the model provides sound indications on the effects of key design parameters and operating conditions on cell behavior and performance.
Android is an operating system which was developed for use in smart mobile phones and is the current leader in this market. A lot of efforts are being spent to make Android available to the embedded world, as well. Many embedded systems do not have a local GUI and are therefore called headless devices. This paper presents the results of an analysis of the general suitability of Anroid in headless embedded systems and ponders the advantages and disadvantages. It focuses on the hardware related issues, i.e. to what extent Android supports hardware peripherals normally used in embedded systems.
Special implant connection module was developed to combine full features of two commercial heart rhythm simulators, ARSI-4 and Intersim II, into a master-slave teaching system. Seven workstations were equipped with the Carelink and Homemonitoring remote patient monitoring systems. This combination enables in-vitro training of physicians, nurses and students in pace-maker and defibrillator measurements during implantation and individual programming in the follow-up. Thus, extended sets of arrhythmias and electrode problems can be used to simulate problems and their solutions in a wide range of the clinical routine.
In this paper we propose a motion framework forbipedal robots that decouples motion definitions from stabilizingthe robot. This simplifies motion definitions yet allows dynamicmotion adaptations. Two applications, walking and stopping onone leg, demonstrate the power of the framework. We show thatour framework is able to perform walking and stopping on one legeven under extreme conditions and improves walking benchmarkssignificantly in the RoboCup 3D soccer simulation domain.
The communication system of a large-scale concentrator photovoltaic power plant is very challenging. Manufacturers are building power plants having thousands of sun tracking systems equipped with communication and distributed over a wide area. Research is necessary to build a scalable communication system enabling modern control strategies. This poster abstract describes the ongoing work on the development of a simulation model of such power plants in OMNeT++. The model uses the INET Framework to build a communication network based on Ethernet. First results and problems of timing and data transmission experiments are outlined. The model enables research on new communication and control approaches to improve functionality and efficiency of power plants based on concentrator photovoltaic technology.
The design of control systems of concentrator photovoltaic power plants will be more challenging in the future. Reasons are cost pressure, the increasing size of power plants, and new applications for operation, monitoring and maintenance required by grid operators, manufacturers and plant operators. Concepts and products for fixed-mounted photovoltaic can only partly be adapted since control systems for concentrator photovoltaic are considerable more complex due to the required high accurate sun-tracking. In order to assure reliable operation during a lifetime of more than 20 years, robustness of the control system is one crucial design criteria. This work considers common engineering technics for robustness, safety and security. Potential failures of the control system are identified and their effects are analyzed. Different attack scenarios are investigated. Outcomes are design criteria that encounter both: failures of system components and malicious attacks on the control system of future concentrator photovoltaic power plants. Such design criteria are a transparent state management through all system layers, self-tests and update capabilities for security concerns. The findings enable future research to develop a more robust and secure control system for concentrator photovoltaics when implementing new functionalities in the next generation.
The aim of the paper was to investigate the energy saved in the shift from separate generation of thermal and electrical energy to trigeneration at the energy facility in Offenburg University of Applied Sciences (HS OG). The energy facility at HS OG used a traditional heating system and electricity from grid until 2007 afterwhich they installed a trigeneration system to meet its continuously changing dynamic thermal and electrical demands. This paper highlights the methodology that had been derived to analyze and study the effect of this shift based on the energy consumption data available from 2004 to 2011, which were scarce due to the limited monitoring. From the energy analysis, we concluded that 8 % primary energy was saved in this shift at the energy facility of HS OG. And from economical perspective 5 % useful thermal energy and 39 % useful electrical energy was saved in this shift at the energy facility of HS OG. Nevertheless, the term energy saving, in general, is very relative and complex to define in such a changeover.
In the brain-cell microenvironment, diffusion plays an important role: apart from delivering glucose and oxygen from the vascular system to brain cells, it also moves informational substances between cells. The brain is an extremely complex structure of interwoven, intercommunicating cells, but recent theoretical and experimental works showed that the classical laws of diffusion, cast in the framework of porous media theory, can deliver an accurate quantitative description of the way molecules are transported through this tissue. The mathematical modeling and the numerical simulations are successfully applied in the investigation of diffusion processes in tissues, replacing the costly laboratory investigations. Nevertheless, modeling must rely on highly accurate information regarding the main parameters (tortuosity, volume fraction) which characterize the tissue, obtained by structural and functional imaging. The usual techniques to measure the diffusion mechanism in brain tissue are the radiotracer method, the real time iontophoretic method and integrative optical imaging using fluorescence microscopy. A promising technique for obtaining the values for characteristic parameters of the transport equation is the direct optical investigation using optical fibers. The analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. This paper presents a set of computations concerning the mass transport inside the brain tissue, for different types of cells. By measuring the time evolution of the concentration profile of an injected substance and using suitable fitting procedures, the main parameters characterizing the tissue can be determined. This type of analysis could be an important tool in understanding the functional mechanisms of effective drug delivery in complex structures such as the brain tissue. It also offers possibilities to realize optical imaging methods for in vitro and in vivo measurements using optical fibers. The model also may help in radiotracer biomarker models for the understanding of the mechanism of action of new chemical entities.