Refine
Year of publication
Document Type
- Conference Proceeding (38)
- Article (reviewed) (10)
- Book (6)
- Contribution to a Periodical (4)
- Patent (4)
- Article (unreviewed) (3)
- Part of a Book (2)
- Other (1)
Language
- English (44)
- German (23)
- Other language (1)
Keywords
- Ausbildung (6)
- Produktion (6)
- Design (4)
- CAD (3)
- Digitalisierung (3)
- Druck (3)
- Additive Manufacturing (2)
- CAAD (2)
- Dimension 3 (2)
- Götz von Berlichingen (2)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (60)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (5)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (5)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (4)
- Fakultät Medien und Informationswesen (M+I) (1)
- Zentrale Einrichtungen (1)
A method for 3D printing of a robot element, more particularly a finger for use in robotics. At least one sensor is concomitantly printed by means of multi-material printing during the printing of the robot element. A gripping element produced by a method of this kind includes a number of printed layers of robot element material and a concomitantly printed sensor.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
Zur Herstellung von Spritzgussformeinsätzen kommen in der Regel spanende Verfahren zum Einsatz. In den letzten Jahren hat sich allerdings auch die additive Herstellung dieser Werkzeuge als zweckmäßig erwiesen. In der Produktentwicklung spielt die Agilität heute eine immer wichtigere Rolle. Um mögliche Potentiale des Additive Tooling im Rahmen des Agile Prototyping und um Unterschiede zu den konventionellen Herstellverfahren aufzuzeigen, werden Angebote für die Fertigung mehrerer Formeinsätze durch eine CNC- und HSC-Fertigung, sowie durch additive Herstellung angefragt und hinsichtlich Beschaffungskosten und -zeiten miteinander verglichen. Zudem erfolgt eine Bewertung der technischen Unterschiede. Aus diesen beiden Betrachtungen kann schließlich ein Profil über die drei Herstellverfahren abgeleitet werden, welches bei der anwendungsfallspezifischen Verfahrensauswahl unterstützen soll.
Additive manufacturing (AM) and in particular the application of 3D multi material printing offers completely new production technologies thanks to the degree of freedom in design and the simultaneous processing of several materials in one component. Today's CAD systems for product development are volume-based and therefore cannot adequately implement the multi-material approach. Voxel-based CAD systems offer the advantage that a component can be divided into many voxels and different materials and functions can be assigned to these voxels. In this contribution two voxel-based CAD systems will be analyzed in order to simplify the AM on voxel level with different materials. Thus, a number of suitable criteria for evaluating voxel-based CAD systems are being developed and applied. The results of a technical-economic comparison show the differences between the voxel-based systems and disclose their disadvantages compared to conventional CAD systems. In order to overcome these disadvantages, a new method is therefore presented as an approach that enables the voxelization of a component in a simple way based on a conventional CAD model. The process chain of this new method is demonstrated using a typical component from product design. The results of this implementation of the new method are illustrated and analyzed.
Additive manufacturing (AM) or 3D printing (3DP) has become a widespread new technology in recent years and is now used in many areas of industry. At the same time, there is an increasing need for training courses that impart the knowledge required for product development in 3D printing. In this article, a workshop on “Rapid Prototyping” is presented, which is intended to provide students with the technical and creative knowledge for product development in the field of AM. Today, additive manufacturing is an important part of teaching for the training of future engineers. In a detailed literature review, the advantages and disadvantages of previous approaches to training students are examined and analyzed. On this basis, a new approach is developed in which the students analyze and optimize a given product in terms of additivie manufacturing. The students use two different 3D printers to complete this task. In this way, the students acquire the skills to work independently with different processes and materials. With this new approach, the students learn to adapt the design to different manufacturing processes and to observe the restrictions of different materials. The results of these courses are evaluated through feedback in a presentation and a questionnaire.