Refine
Document Type
- Conference Proceeding (70) (remove)
Keywords
- Heart rhythm model (5)
- Modeling and simulation (5)
- Cryoballoon catheter ablation (2)
- Supraventricular tachycardia (2)
- 3D print (1)
- AC machines (1)
- Air Pollution (1)
- Amplitude and Phase Errors (1)
- Atrial fibrillation (1)
- Battery storage (1)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (70) (remove)
In this work, we evaluate two different image clustering objectives, k-means clustering and correlation clustering, in the context of Triplet Loss induced feature space embeddings. Specifically, we train a convolutional neural network to learn discriminative features by optimizing two popular versions of the Triplet Loss in order to study their clustering properties under the assumption of noisy labels. Additionally, we propose a new, simple Triplet Loss formulation, which shows desirable properties with respect to formal clustering objectives and outperforms the existing methods. We evaluate all three Triplet loss formulations for K-means and correlation clustering on the CIFAR-10 image classification dataset.
Investigation of the Angle Dependency of Self-Calibration in Multiple-Input-Multiple-Output Radars
(2021)
Multiple-Input-Multiple-Output (MIMO) is a key technology in improving the angular resolution (spatial resolution) of radars. In MIMO radars the amplitude and phase errors in antenna elements lead to increase in the sidelobe level and a misalignment of the mainlobe. As the result the performance of the antenna channels will be affected. Firstly, this paper presents analysis of effect of the amplitude and phase errors on angular spectrum using Monte-Carlo simulations. Then, the results are compared with performed measurements. Finally, the error correction with a self-calibration method is proposed and its angle dependency is evaluated. It is shown that the values of the errors change with an incident angle, which leads to a required angle-dependent calibration.
Estimation of Scattering and Transfer Parameters in Stratified Dispersive Tissues of the Human Torso
(2021)
The aim of this study is to understand the effect of the various layers of biological tissues on electromagnetic radiation in a certain frequency range. Understanding these effects could prove crucial in the development of dynamic imaging systems under operating environments during catheter ablation in the heart. As the catheter passes through some arterial paths in the region of interest inside the heart through the aorta, a three-dimensional localization of the catheter is required. In this paper, a study is given on the detection of the catheter by using electromagnetic waves. Therefor, an appropriate model for the layers of the human torso is defined and simulated without and with an inserted electrode.
Elektronische Türschilder zur Darstellung von Informationen sind insbesondere in öffentlichen Gebäuden zwischenzeitlich weit verbreitet. Die Varianz dieser elektronischen Türschilder reicht vom Tablet-basierten Türschild bis hin zum PC-basierten Türschild mit externem Bildschirm. Zumeist werden die Systeme mit 230 V betrieben. Bei einer großen Summe von Türschildern in öffentlichen Gebäuden kann dies zu einem signifikanten Umsatz an Energie führen. Im Rahmen dieses Papers wird die Entwicklung eines energieautarken arbeiten Türschildes vorgestellt, bei dem ein E-Paper-Display zum Einsatz kommt. Das Türschild lässt sich per Smartphone-App und NFC-Schnittstelle konfigurieren. Es wird insbesondere auf das Low-Power-Hardware-Design der Elektronik und energetische Aspekte eingegangen.
The authentication method of electronic devices, based on individual forms of correlograms of their internal electric noises, is well-known. Specific physical differences in the components – for example, caused by variations in production quality – cause specific electrical signals, i.e. electric noise, in the electronic device. It is possible to obtain this information and to identify the specific differences of the individual devices using an embedded analog-to-digital converter (ADC). These investigations confirm the possibility to identify and authenticate electronic devices using bit templates, calculated from the sequence of values of the normalized autocorrelation function of noise. Experiments have been performed using personal computers. The probability of correct identification and authentication increases with increasing noise recording duration. As a result of these experiments, an accuracy of 98.1% was achieved for a 1 second-long registration of EM for a set of investigated computers.
The development of Internet of Things (IoT) embedded devices is proliferating, especially in the smart home automation system. However, the devices unfortunately are imposing overhead on the IoT network. Thus, the Internet Engineering Task Force (IETF) have introduced the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) to provide a solution to this constraint. 6LoWPAN is an Internet Protocol (IP) based communication where it allows each device to connect to the Internet directly. As a result, the power consumption is reduced. However, the limitation of data transmission frame size of the IPv6 Routing Protocol for Low-power and Lossy Network’s (RPL’s) had made it to be the running overhead, and thus consequently degrades the performance of the network in terms of Quality of Service (QoS), especially in a large network. Therefore, HRPL was developed to enhance the RPL protocol to minimize redundant retransmission that causes the routing overhead. We introduced the T-Cut Off Delay to set the limit of the delay and the H field to respond to actions taken within the T-Cut Off Delay. Thus, this paper presents the comparison performance assessment of HRPL between simulation and real-world scenarios (6LoWPAN Smart Home System (6LoSH) testbed) in validating the HRPL functionalities. Our results show that HRPL had successfully reduced the routing overhead when implemented in 6LoSH. The observed Control Traffic Overhead (CTO) packet difference between each experiment is 7.1%, and the convergence time is 9.3%. Further research is recommended to be conducted for these metrics: latency, Packet Delivery Ratio (PDR), and throughput.
During the day-to-day exploitation of localization systems in mines, the technical staff tends to incorrectly rearrange radio equipment: positions of devices may not be accurately marked on a map or their positions may not correspond to the truth. This situation may lead to positioning inaccuracies and errors in the operation of the localization system.This paper presents two Bayesian algorithms for the automatic corrections of positions of the equipment on the map using trajectories restored by the inertial measurement units mounted to mobile objects, like pedestrians and vehicles. As a basis, a predefined map of the mine represented as undirected weighted graph was used as input. The algorithms were implemented using the Simultaneous Localization and Mapping (SLAM) approach.The results prove that both methods are capable to detect misplacement of access points and to provide corresponding corrections. The discrete Bayesian filter outperforms the unscented Kalman filter, which, however, requires more computational power.
RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications
(2020)
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used – short Transmission Time Interval (TTI), Time-Division Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable end-to-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.