Refine
Year of publication
Document Type
- Conference Proceeding (143) (remove)
Language
- German (143) (remove)
Keywords
- Konstruktion (4)
- Kerbe (3)
- Produktentwicklung (3)
- Finite-Elemente-Methode (2)
- Herzrhythmusmodell (2)
- 3D-Druck von leitfähigen Materialien (1)
- Abwasser (1)
- Adsorption (1)
- Agile Business (1)
- Aktivierung (1)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (58)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (46)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (19)
- Fakultät Medien und Informationswesen (M+I) (16)
- Zentrale Einrichtungen (2)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (1)
Hintergrund: Die Pulmonalvenenisolation (PVI) mit Hilfe von Kryoballonkathetern ist eine anerkannte Methode zur Behandlung von Vorhofflimmern (AF). Diese Methode bietet eine kürzere Behandlungsdauer als die klassische Therapie durch die Hochfrequenzablation (HF). Ziel dieser Studie war es, verschiedene Kryoballonkatheter, HF-Katheter und Ösophaguskatheter in ein Herzrhythmusmodell zu integrieren und mittels statischer und dynamischer Simulation elektrische und thermische Felder bei PVI unter Vorhofflimmern zu untersuchen.
Methodik: Die Modellierung und Simulation erfolgte mit der elektromagnetischen und thermischen Simulationssoftware CST (CST Darmstadt). Zwei Kryoballons, ein HF-Ablationskatheter und ein Ösophaguskatheter wurden auf der Grundlage der technischen Handbücher der Hersteller Medtronic und Osypka modelliert. Der 23 mm Kryoballon und ein kreisförmiger Mappingkatheter wurden in das Offenburger Herzrhythmusmodell integriert, insbesondere die left inferior pulmonary vein (LIPV) zur Simulation der thermischen Feldausbreitung während einer PVI. Die Simulation einer PVI mit HF-Energie wurde mit dem integrierten HF-Ablationskatheter in der Nähe der LIPV durchgeführt. Der im Herzrhythmusmodell platzierte TO8 Ösophaguskatheter ermöglichte die Ableitung linksatrialer elektrischer Felder bei AF und die Analyse thermischer Felder während PVI.
Ergebnisse: Elektrische Felder konnten bei Sinusrhythmus und AF mit einem AF-Fokus in der LIVP statisch und dynamisch im Herzen und Ösophagus simuliert werden. Bei einer simulierten 20 Sekunden Applikation eines Kryoballon-Katheters bei -50°C wurde eine Temperatur von -24°C in einer Tiefe von 0,5 mm im Myokard gemessen. In einer Tiefe von 1 mm betrug die Temperatur -3°C, bei 2 mm Tiefe 18°C und bei 3 mm Tiefe 29°C. Unter der 15 sekündigen Anwendung eines HF-Katheters mit einer 8-mm-Elektrode und einer Leistung von 5 W bei 420 kHz betrug die Temperatur an der Spitze der Elektrode 110°C. In einer Tiefe von 0,5 mm im Myokard betrug die Temperatur 75°C, in einer Tiefe von 1 mm 58°C, in einer Tiefe von 2 mm 45°C und in einer Tiefe von 3 mm 38°C. Im Ösophagus konnte bei den meisten Simulationen eine konstante Temperatur von 37°C gemessen und die Gefahr einer Ösophagus-Fistel ausgeschlossen werden. Bei Kryoablation der LIPV wurde eine Abkühlung des Ösophagus auf 30°C gemessen.
Schlussfolgerungen: Die Herzrhythmussimulation elektrischer und thermaler Felder ermöglichen mit Anwendung unterschiedlicher Herzkatheter eine statische und dynamische Simulation von PVI durch Kryoablation, HF-Ablation und Temperaturanalyse im Ösophagus. Unter Einbeziehung von MRT- oder CT-Daten können elektrische und thermale Simulationen möglicherweise zur Optimierung von PVIs genutzt werden.
Es wird eine Fallstudie vorgestellt, die die Visualisierung von Geschäftsdaten nach dem International Business Communication Standard IBCS (Hichert & Faisst 2016 / 2017) auf der cloudbasierten Plattform SAP Analytics Cloud umsetzt. Mit der Fallstudie soll die Frage beantwortet werden, ob IBCS im Rahmen einer Lehreinheit mit hohem praktischem Anteil mit SAP Analytics Cloud umgesetzt werden kann. Darüber hinaus soll der generelle Einsatz von SAP Analytics Cloud für die Lehre im Analytics-Umfeld evaluiert werden.
Der Entwurf und die Realisierung gedruckter Schaltungen oder Elektronikkomponenten stellt ein intensives Thema der Forschung dar. Forschungsgruppen beschäftigen sich zunehmend mit der Entwicklung von gedruckten Energy Harvestern, weil diese kostengünstig und einfach herstellbar sind. Das Energy Harvesting (EH) oder auch das ”Mikro Energy Harvesting“ (MEH) bezeichnet die Gewinnung von elektrischer Energie aus der Umgebung, um elektronische Verbraucher zu versorgen, kontinuierliche Leistungen zu erzeugen, das System energieeffizienter zu machen, sowie die Energiespeicherung im Mikrowattbereich zu gewährleisten. Energy Harvesting-Systeme stellen eine Alternative gegenüber der Energieversorgung autarker Low-Power-Elektronik mit Batterien dar. Das Energiemanagement solcher EH-Systeme ist jedoch eine Herausforderung aufgrund der Energieverfügbarkeit und der im Zeitablauf nicht konstanten Verlustleistung. Dieser Beitrag gibt einen Überblick über die derzeit existierenden ultra low-power Energiemanagement Schaltungen für Energy Harvester. Dabei wird insbesondere der Fokus auf gedruckte Energy Harvester gelegt. Es soll aufgezeigt werden, welche Aspekte der vorgestellten Energieversorgungsschaltungen bei der Entwicklung eines Energieversorgungschips für gedruckte Energy Harvester berüucksichtigt werden sollen.
Implementierung von Softcore-Prozessoren und/oder weiteren IPs (Intellectual Property) in FPGAs
(2018)
Die zunehmende Integration von kompletten Systemen auf einem Chip (System-on-Chip, SoC) erfordert auch immer die Integration einer Recheneinheit bzw. eines Prozessorkerns. Möchte man insbesondere Low-Power-SoC-Systeme entwickeln, z.B. drahtlose Sensor-SoC-Systeme für Anwendungen im Rahmen von Industrie 4.0, ist die Implementierung eines solchen Prozessorkerns mit hohen Herausforderungen verbunden. Prinzipiell können hierfür verschiedene Ansätze verfolgt werden, nämlich die Implementierung einer Hardcore Prozessor-IP (IP = Intellectual Property) oder einer Softcore-Prozessor-IP. Im vorliegenden Beitrag wird zunächst auf den derzeitigen Stand der Technik verfügbarer Hardcore- oder Softcore-Prozessoren unter den Randbedingungen der Low-Power-Anforderungen und der weiten Verbreitung des Cores in industriellen Anwendungen eingegangen. Schließlich werden die Ergebnisse der Implementierung und Evaluierung eines derzeit frei verfügbaren 16-bit MSP430-kompatiblen Softcore Prozessors auf einem Altera-Cyclon-FPGA vorgestellt. Aus den Ergebnissen wird ein entsprechendes Fazit für die Implementierung von Low-Power-SoC-Systeme gegeben.
Optische Navigationssysteme weisen bisher eine eindeutige Trennung zwischen nachverfolgendem Gerät (Tool Tracker) und nachverfolgten Geräten (Tracked Tools) auf. In dieser Arbeit wird ein neues Konzept vorgestellt, dass diese Trennung aufhebt: Jedes Tracked Tool ist gleichzeitig auch Tool Tracker und besteht aus Marker-LEDs sowie mindestens einer Kamera, mit deren Hilfe andere Tracker in Lage und Orientierung nachverfolgt werden können. Bei Verwendung von nur einer Kamera geschieht dies mittels Pose Estimation, ab zwei Kameras werden die Marker-LEDs trianguliert. Diese Arbeit beinhaltet die Vorstellung des neuen Peer-To-Peer-Tracking-Konzepts, einen sehr schnellen Pose-Estimation-Algorithmus für beliebig viele Marker sowie die Klärung der Frage, ob die mit Pose Estimation erreichbare Genauigkeit vergleichbar mit der eines Stereo-Kamera-Systems ist und den Anforderungen an die chirurgische Navigation gerecht wird.
Implementation of interdisciplinary student teams in design education for additive manufacturing
(2018)
Additive manufacturing (AM) technologies are becoming increasingly popular in all areas of product development. Therefore, it is imperative that students be taught Design for AM. However, due to the rapid development of new methods and materials for AM, it does not make sense to only teach particular design guidelines, as these can quickly become obsolete. Rather, students should acquire the competence to develop guidelines themselves, that take into account the current state of the art. Thus, they will be able to react to changing processes and new materials
in the future. In order to convey the independent development of design guidelines for additive manufacturing by students, a new concept was developed, which is presented in this contribution. In this process, the learning goal is worked out by a group of students on the basis of a practical
task. The group consists of an interdisciplinary team in order to combine different competencies and to provide different perspectives on the task. A case study will show the design and manufacture of a miniature aircraft using Fused Layer Modelling. The aim of the development is above all the design for additive manufacturing. In addition, a low use of resources in combination with lightweight construction should be achieved. In the implementation of the task, the students are confronted with challenging aerodynamic design of wings as well as with the economic evaluation of the development process. An examination of the level of knowledge before and after the case study examines the learning success.
Mit Gendering Marteloskope stellen wir Entwicklungsprozess dar: Entstanden ist videografisches Material in Marteloskopen, die im Wald Bäume, Tablets und Menschen in Dialog zueinander setzen. Die Videografie und die Erfahrungen vor Ort werden mit Ansätzen aus Gender in Science and Technlogy Studies reflektiert sowie mit digital unterstützter kollaborativer Didaktik über interaktive Webdokumentationen zu Open Science Modulen zusammengeführt.