### Refine

#### Year of publication

#### Document Type

- Article (reviewed) (153)
- Conference Proceeding (122)
- Article (unreviewed) (70)
- Contribution to a Periodical (38)
- Part of a Book (37)
- Bachelor Thesis (16)
- Patent (15)
- Book (13)
- Other (11)
- Report (9)

#### Keywords

- Dünnschichtchromatographie (26)
- Adsorption (11)
- Energieversorgung (10)
- Metallorganisches Netzwerk (10)
- Ermüdung (9)
- Finite-Elemente-Methode (9)
- Plastizität (8)
- Bauteil (7)
- Haustechnik (7)
- Mikrostruktur (7)

#### Institute

- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (492) (remove)

In thermomechanisch hochbelasteten Bauteilen begrenzt das Wachstum von Ermüdungsrissen die Bauteillebensdauer. Es kommen Lebensdauermodelle und Finite-Elemente Simulationen zum Einsatz, um ein vorzeitiges Bauteilversagen zu verhindern. Hierbei werden im Allgemeinen deterministische Werkstoffeigenschaften unterstellt, sodass die Information über die im realen Werkstoff auftretenden Streuungen verloren geht, was eine Unsicherheit im Auslegungsprozess mit sich bringt. In der vorliegenden Ausarbeitung werden Methoden zur adäquaten Bestimmung der Werkstoffkennwerte und zur Beschreibung ihrer Streuung durch statistische Verteilungen entwickelt. Einen wesentlichen Aspekt der Arbeit stellt die Bestimmung von objektiven Werkstoffkennwerten dar, zu deren Zweck ein Robustheitskriterium eingeführt wird. Anhand zahlreicher Versuchsdatensätze der Nickelbasislegierung MARM247 und des niobstabilisierten austenitischen Stahls X6 CrNiNb 18-10 kann diese Methodik ausgearbeitet werden und führt auf ein probabilistisches Lebensdauermodell, dass die Abschätzung des Einfluusses von statistisch verteilten Werkstoffkennwerten auf die Ermüdungslebensdauer erlaubt. Als Ergebnis einer Monte-Carlo Simulation zeigt sich, dass im Vergleich von deterministischer zu probabilistischer Lebensdauerbewertung eine probabilistische Auswertung bei beiden untersuchten Werkstoffen zu einem um circa Faktor zwei größeren Streuband in der Lebensdauer führt. In einem Bauteilkonzept wird die anhand der Versuchsdaten erarbeitete Methodik erweitert, sodass eine Abschätzung des Ein usses von streuenden Werkstoffeigenschaften auf Bauteilebene durch Finite-Elemente Simulationen möglich wird. Es kommt das Two-Layer-Viscoplasticity Modell zum Einsatz. Um die Streuung seiner Werkstoffkennwerte ermitteln zu können, reicht die vorliegende Datenbasis nicht aus, sodass Annahmen zu den Werkstoffkennwerten getroffen werden müssen.

Hot working tools are subjected to complex thermal and mechanical loads during service. Locally, the stresses can exceed the material’s yield strength in highly loaded areas. During production, this causes cyclic plastic deformation and thus thermomechanical fatigue, which can significantly shorten the lifetime of hot working tools. To sustain this high loads, the hot working tools are typically made of tempered martensitic hot work tool steels. While the annealing temperatures of the tool steels usually lie in the range of 400 to 600 °C, the steels may experience even higher temperatures during hot working, resulting in softening of the material due to changes in microstructure. Therefore, the temperature-dependent cyclic mechanical properties of the frequently used hot work tool steel 1.2367 (X38CrMoV5-3) after tempering are investigated in this work. To this end, hardness measurements are performed. Furthermore, the Institute of Forming Technology and Machines (IFUM) provides test results from cyclic tests at temperatures ranging from 20 °C (room temperature) to 650 °C. To describe the observed time- and temperature-dependent softening during tempering, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is developed. In addition, both mechanism-based and phenomenological relationships for the cyclic mechanical properties of the Ramberg- Osgood model depending on carbide size and temperature are proposed. The stress-strain hysteresis loops measured at different temperatures and after different heat treatments can be well described with the proposed kinetic and mechanical model. Furthermore, the model is suitable for integration in advanced mechanism-based lifetime models. However, since the Ramberg-Osgood model is not suitable for finite element implementation, a temperature-dependent incremental cyclic plasticity model is presented as well. Thus, softening due to particle coarsening can be applied in the finite element method (FEM). Therefore, a kinetic model is coupled with a cyclic plasticity model including kinematic hardening. The plasticity model is implemented via subroutines in the finite element program ABAQUS for implicit integration (subroutine called UMAT) and explicit integration (subroutine called VUMAT). The implemented model is used for the simulation of an exemplary hot working process to assess the effects of softening due to particle coarsening. It shows that the thermal softening at high temperatures, which occur over a long time at a mechanically highly loaded area, has a great influence. If this influence is not considered in tool design, an unexpected tool failure might occur bringing the production to a standstill.

Brückenkurs Physik
(2019)

Dieses Lehrbuch fasst alle wesentlichen, für das Studium eines MINT-Faches relevanten Inhalte der Physik zusammen und hilft physikalisches Grundwissen aufzufrischen. Es unterstützt Studienanfänger dabei, die Routine in der konkreten Anwendung, die an der Hochschule vorausgesetzt wird, zu festigen. Dabei folgt die Stoffauswahl dem Mindestanforderungskatalog Physik, den ein Arbeitskreis aus Professoren der baden-württembergischen Hochschulen für angewandte Wissenschaften zusammengestellt hat.

Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material. To numerically account for ageing effects, the Shercliff & Ashby ageing model is combined with a Chaboche-type viscoplasticity model available in the finite-element program ABAQUS by defining field variables. The constitutive model with ageing effects is correlated with uniaxial cyclic isothermal tests in the T6 state, the overaged state, as well as thermomechanical tests. On the other hand, the mechanism-based TMF damage model (DTMF) is calibrated for both T6 and over-aged state. Both the constitutive and the damage model are applied to a cylinder head component simulating several cycles on an engine dynamometer test. The effects of including ageing for both models are shown.

High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length. In the presence of significant gradients of stresses, strains, and temperatures, the use of surface field values could lead to very conservative estimates of TMF life when compared with reported lives from hardware testing. As an approximation of gradient effects, a non-local approach of the DTMF model is applied. This approach considers through-thickness fields where the micro-crack growth law is integrated through the thickness considering these variable fields. With the help of software tools, this method is automated and applied to components with complex geometries and fields. It is shown, for the TMF life prediction of a turbocharger housing, that the gradient correction using the non-local approach leads to more realistic life predictions and can distinguish between surface cracks that may arrest or propagate through the thickness and lead to component failure.

Instabilities of the interface between two thin liquid films under DC electroosmotic flow are investigated using linear stability analysis followed by an asymptotic analysis in the long-wave limit. The two-liquid system is bounded by two rigid plates which act as substrates. The Boltzmann charge distribution is considered for the two electrolyte solutions and gives rise to a potential distribution in these liquids. The effect of van der Waals interactions in these thin films is incorporated in the momentum equations through the disjoining pressure. Marginal stability and growth rate curves are plotted in order to identify the thresholds for the control parameters when instabilities set in. If the upper liquid is a dielectric, the applied electric field can have stabilizing or destabilizing effects depending on the viscosity ratio due to the competition between viscous and electric forces. For viscosity ratio equal to unity, the stability of the system gets disconnected from the electric parameters like interface zeta potential and electric double-layer thickness. As expected, disjoining pressure has a destabilizing effect, and capillary forces have stabilizing effect. The overall stability trend depends on the complex contest between all the above-mentioned parameters. The present study can be used to tune these parameters according to the stability requirement.

DEM–FEA estimation of pores arrangement effect on the compressive Young’s modulus for Mg foams
(2015)

This work reports the study of the effect of the pore arrangement on the compressive behavior of Mg foams with regular pore size and porosities ranging from 25% to 45%. Pore arrangements were modeled using Finite Element Analysis (FEA), with random and ordered models, and compared to the estimations obtained for a previous work. The coordinates of the random pore arrangements were firstly generated using Discrete Element Method (DEM), and used in a second stage for modeling the pores by FEA. Estimations were also compared to the experimental results for Mg foams obtained by means of powder metallurgy. Results show important drops in the Young’s moduli as the porosity increases for both, experimental results and FEA estimations. Estimations obtained using ordered pore arrangements presented significant differences when compared to the estimations acquired from models with random arrangements. The randomly arranged models represent more accurately the real topologies of the experimental metallic foams. The Young’s moduli estimated using these models were in excellent agreement with the experiments, whilst the estimations obtained using ordered models presented relative errors significantly higher. The importance of the use of more realistic FEA models for improving the predicting ability of this method was probed, for the study of the mechanical properties of metallic foams.

The formation and analysis of ten microporous triazolyl isophthalate based MOFs, including nine isomorphous and one isostructural compound is presented. The compounds 1 M – 3 M with the general formula [ M ( R 1 - R 2 - trz - ia ) ] ∞ 3 ·x H 2 O (M 2+ = Co 2+ , Cu 2+ , Zn 2+ , Cd 2+ ; R 1 = H, Me; R 2 = 2py, 2pym, prz (2py = 2-pyridinyle; 2pym = 2-pyrimidinyle; prz = pyrazinyle)) crystallize with rtl topology. They are available as single crystals and also easily accessible in a multi-gram scale via refluxing the metal salts and the protonated ligands in a solvent. Their isomorphous structures facilitate the synthesis of heteronuclear MOFs; in case of 2 M , Co 2+ ions could be gradually substituted by Cu 2+ ions. The Co 2+ :Cu 2+ ratios were determined by ICP-OES spectroscopy, the distribution of Co 2+ and Cu 2+ in the crystalline samples are investigated by SEM-EDX analysis leading to the conclusions that Cu 2+ is more favorably incorporated into the framework compared to Co 2+ and, moreover, that the distribution of the two metal ions between the crystals and within the crystals is inhomogeneous if the crystals were grown slowly. The various compositions of the heteronuclear materials lead to different colors and the sorption properties for CO 2 and N 2 are dependent on the integrated metal ions.

We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.