Photonics meet digital art
(2014)
The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at http://www.magic-of-light.org/iyl2015/index.htm. From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.
This paper explains the realization of a concept for research-oriented photonics education. Using the example of the integration of an actual PhD project, it is shown how students are familiarized with the topic of research and scientific work in the first semesters. Typical research activities are included as essential parts of the learning process. Research should be made visible and tangible for the students. The authors will present all aspects of the learning environment, their impressions and experiences with the implemented scenario, as well as first evaluation results of the students.
Live streaming of events over an IP network as a catalyst in media technology education and training
(2020)
The paper describes how students are involved in applied research when setting up the technology and running a live event. Real-time IP transmission in broadcast environments via fiber optics will become increasingly important in the future. Therefore, it is necessary to create a platform in this area where students can learn how to handle IP infrastructure and fiber optics. With this in mind, we have built a fully functional TV control room that is completely IP-based. The authors present the steps in the development of the project and show the advantages of the proposed digital solutions. The IP network proves to be a synergy between the involved teams: participants of the robot competition and the members of the media team. These results are presented in the paper. Our activities aim to awaken enthusiasm for research and technology in young people. Broadcasts of live events are a good opportunity for "hands on" activities.
Astronomical phenomena fascinate people from the very beginning of mankind up to today. In this paper the authors will present their experience with photography of astronomical events. The main focus will be on aurora borealis, comet Neowise, total lunar eclipses and how mobile devices open up new possibilities to observe the green flash. Our efforts were motivated by the great impact and high number of viewers of these events. Visitors from over a hundred countries watched our live broadcasts.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights Fig. 1, comet Neowise with a Delta Aquariids meteor Fig. 11, and lunar eclipses Fig. 12.
Art and Photonics
(2019)
In this paper we report on our continuous efforts to apply optics and photonics in art. This results in interdisciplinary projects which sometimes lead to concrete art installations.
We presented some of these projects at the UNESCO headquarters in Paris, at the opening ceremony of the International Year of Light and the inaugural ceremony of the International Day of Light.
Some newer projects, such as “A Maze: Ingenious Pipes” and “The Power of Your Eyes,” are also presented in this paper.
We present our twenty years of experience in the live broadcasting of astronomical events, with the main focus on total lunar eclipses. Our efforts were motivated by the great impact and high number of viewers of these events. Visitors from over a hundred countries watched our live broadcasts. Our viewer record was set on July 27, 2018, with the live transmission of the total lunar eclipse from the Feldberg, the highest mountain in the Black Forest, attracting nearly half a million viewers in five hours.
An especially challenging activity was the live observing of the Mercury transit on 9 May 2016, which we presented as ‘live astronomy’ with hands-on telescope. The main goal of this event was to awake our students enthusiasm for optics and astronomy.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights and green flash.
After the successful International Year of Light 2015, the idea of sustainability became increasingly imminent. After a preparatory year on 16 May 2018, the International Day of Light was launched for the first time. This event was
celebrated with a public celebration in Paris at the UNESCO headquarters.
In this paper we will present our projects dedicated to the International Day of Light in Paris. Together with a group of students from our university, we had the special opportunity to be integrated in the program of the opening ceremony at UNESCO in Paris.
With our interdisciplinary projects we have tried to build a bridge between optics, photonics, art and media installations.
The authors explain a developed concept for research-oriented education in optics and photonics. It is presented which
goals are to be achieved, which strategies have been developed and how these can be implemented in a blended learning
scenario. The goal of our education is the best possible qualification of the students on the basis of a strong scientific and
research-oriented education, which also includes the acquisition of important interdisciplinary competences. All phases
of a research process are to be mapped in the learning process and offer students an insight into current research topics in
optics and photonics.
Increased knowledge transfer through the integration of research projects into university teaching
(2019)
This paper describes the integration of the research project "Characterization of Color Vision using Spectroscopy and
Nanotechnology: Application to Media Photonics" into an engineering course in the field of media technology. The aim
is to develop the existing learning concept towards a more research-oriented teaching. Involving students in research
projects as part of the learning process provides a deeper insight into current research topics and the key elements of
scientific work. This makes it easier for students to recognize the importance of the acquired theoretical knowledge for
the practice, which enables them to derive new insights of their own.
Walking interfaces offer advantages in navigation of VE systems over other types of locomotion. However, VR helmets have the disadvantage that users cannot see their immediate surroundings. Our publication describes the prototypical implementation of a virtual environment (VE) system, capable of detecting possible obstacles using an RGB-D sensor. In order to warn users of potential collisions with real objects while they are moving throughout the VE tracking area, we designed 4 different visual warning metaphors: Placeholder, Rubber Band, Color Indicator and Arrow. A small pilot study was carried out in which the participants had to solve a simple task and avoid any arbitrarily placed physical obstacles when crossing the virtual scene. Our results show that the Placeholder metaphor (in this case: trees), compared to the other variants, seems to be best suited for the correct estimation of the position of obstacles and in terms of the ability to evade them.
We report the use of the Raman spectral information of the chemical compound toluene C7H8 as a reference on the analysis of laboratory-prepared and commercially acquired gasoline-ethanol blends. The rate behavior of the characteristic Raman lines of toluene and gasoline has enabled the approximated quantification of this additive in commercial gasoline-ethanol mixtures. This rate behavior has been obtained from the Raman spectra of gasoline-ethanol blends with different proportions of toluene.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Paper Abstract
The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm−1 to 3500 cm−1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.
The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.
Our university carries out various research projects. Among others, the project Schluckspecht is an interdisciplinary work
on different ultra-efficient car concepts for international contests. Besides the engineering work, one part of the project
deals with real-time data visualization. In order to increase the efficiency of the vehicle, an online monitoring of the
runtime parameters is necessary.
The driving parameters of the vehicle are transmitted to a processing station via a wireless network connection. We plan
to use an augmented reality (AR) application to visualize different data on top of the view of the real car.
By utilizing a mobile Android or iOS device a user can interactively view various real-time and statistical data. The car
and its components are meant to be augmented by various additional information, whereby that information should
appear at the correct position of the components. An engine e.g. could show the current rpm and consumption values. A
battery on the other hand could show the current charge level.
The goal of this paper is to evaluate different possible approaches, their suitability and to expand our application to other
projects at our university.
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user’s hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation’s virtual elements by the user’s very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Theoretical details about optics and photonics are not common knowledge nowadays. Physicists are keen to scientifically explain ‘light,’ which has a huge impact on our lives. It is necessary to examine it from multiple perspectives and to make the knowledge accessible to the public in an interdisciplinary, scientifically well-grounded and appealing medial way. To allow an information exchange on a global scale, our project “Invisible Light” establishes a worldwide accessible platform. Its contents will not be created by a single instance, but user-generated, with the help of the global community. The article describes the infotainment portal “Invisible Light,” which stores scientific articles about light and photonics and makes them accessible worldwide. All articles are tagged with geo-coordinates, so they can be clearly identified and localized. A smartphone application is used for visualization, transmitting the information to users in real time by means of an augmented reality application. Scientific information is made accessible for a broad audience and in an attractive manner.
In the brain-cell microenvironment, diffusion plays an important role: apart from delivering glucose and oxygen from the vascular system to brain cells, it also moves informational substances between cells. The brain is an extremely complex structure of interwoven, intercommunicating cells, but recent theoretical and experimental works showed that the classical laws of diffusion, cast in the framework of porous media theory, can deliver an accurate quantitative description of the way molecules are transported through this tissue. The mathematical modeling and the numerical simulations are successfully applied in the investigation of diffusion processes in tissues, replacing the costly laboratory investigations. Nevertheless, modeling must rely on highly accurate information regarding the main parameters (tortuosity, volume fraction) which characterize the tissue, obtained by structural and functional imaging. The usual techniques to measure the diffusion mechanism in brain tissue are the radiotracer method, the real time iontophoretic method and integrative optical imaging using fluorescence microscopy. A promising technique for obtaining the values for characteristic parameters of the transport equation is the direct optical investigation using optical fibers. The analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. This paper presents a set of computations concerning the mass transport inside the brain tissue, for different types of cells. By measuring the time evolution of the concentration profile of an injected substance and using suitable fitting procedures, the main parameters characterizing the tissue can be determined. This type of analysis could be an important tool in understanding the functional mechanisms of effective drug delivery in complex structures such as the brain tissue. It also offers possibilities to realize optical imaging methods for in vitro and in vivo measurements using optical fibers. The model also may help in radiotracer biomarker models for the understanding of the mechanism of action of new chemical entities.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
The University for Children is a very successful event aiming to spark children‧s interest in science, in this particular lecture in Optics and Photonics. It is from brain research that we know about the significant dependence of successful learning on the fun factor. Researchers in this field have shown that knowledge acquired with fun is stored for a longer time in the long-term memory and can be used both more efficiently and more creatively [1], [2]. Such an opportunity to inspire the young generation for science must not be wasted. The world of Photonics and Optics provides us with a nearly inexhaustible source of opportunities of this kind.
The paper focuses on a numerical model which describes the radial temperature evolution in an optical fiber during the heating and cooling process according to the SP1 approximation. Based on this model, experimental methods for temperature measurement with optical fibers and for splice process optimization can be developed.