Die zunehmende Anzahl von Transistoren mit immer kleineren Strukturgrößen führt zu einer zunehmenden Leistungsaufnahme in modernen Prozessoren. Das gilt insbesondere für High-End Prozessoren, die mit einer hohen Taktfrequenz betrieben werden. Die aufgenommene Leistung wird in Wärme umgewandelt, die in einer Temperaturerhöhung der Prozessoren resultiert. Hohe Betriebstemperaturen verursachen u.a. eine verringerte Rechenleistung, eine kürzere Lebensdauer des Prozessors und höhere Leckströme. Aus diesen Gründen wird aktives, dynamisches thermisches Management immer wichtiger. Dieser Beitrag stellt eine Erweiterung zu dem Standard- Linux-Scheduler in der Kernel-Version 3.0 für eingebettete Systeme vor: einen PID-Regler, der unter Angabe einer Solltemperatur eine dynamische Frequenz- und Spannungsskalierung durchführt. Die Experimente auf dem Freescale LMX6 Quadcore-Prozessor zeigen, dass der PID-Regler die Betriebstemperatur des Prozessors an die Solltemperatur regeln kann. Er ist die Grundlage für eine in Zukunft zu entwickelnde prädiktive Regelung.
Die Vielfalt der Protokolle, die praktisch auf allen Ebenen der Netzwerkkommunikation zu berücksichtigen ist, stellt eine der großen Herausforderungen bei der fortschreitenden Automatisierung des intelligenten Hauses dar. Unter dem Überbegriff Internet der Dinge (Internet of Things) entstehen gegenwärtig zahlreiche neue Entwicklungen, Standards, Allianzen und so genannte Ökosysteme. Diese haben die Absicht einer horizontalen Integration gewerkeübergreifender Anwendungen und verfolgen fast alle das Ziel, die Situation zu vereinfachen, die Entwicklungen zu beschleunigen und Markterfolge zu erreichen. Leider macht diese Vielfalt momentan die Welt aber eher noch komplexer und bringt damit das Risiko mit sich, genau das Gegenteil der ursprünglichen Absichten zu erreichen. Dieser Beitrag versucht, die Entwicklungen möglichst systematisch zu kategorisieren und mögliche Lösungsansätze zu beschreiben.
Die neueste Generation von programmierbaren Logikbausteinen verfügt neben den konfigurierbaren Logikzellen über einen oder mehrere leistungsfähige Mikroprozessoren. In dieser Arbeit wird gezeigt, wie ein bestehendes Zwei-Chip-System auf einen Xilinx Zynq 7000 mit zwei ARM A9-Cores migriert wird. Bei dem System handelt es sich um das „GPS-gestützte Kreisel-system ADMA“ des Unternehmens GeneSys. Die neue Lösung verbessert den Datenaustausch zwischen dem ersten Mikroprozessor zur digitalen Signalverarbeitung und dem zweiten Prozessor zur Ablaufsteuerung durch ein Shared Memory. Für die schnelle und echtzeitfähige Datenübertragung werden zahlreiche hochbitratige Schnittstellengenutzt.