Refine
Year of publication
- 2015 (60) (remove)
Document Type
- Conference Proceeding (60) (remove)
Keywords
- Kommunikation (5)
- Applikation (4)
- Ausbildung (4)
- Abtragung (2)
- Dienstleistung (2)
- Funktechnik (2)
- Herz (2)
- Hochfrequenztechnik (2)
- Licht (2)
- Physik (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (30)
- Fakultät Medien und Informationswesen (M+I) (15)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (12)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (9)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (8)
- ACI - Affective and Cognitive Institute (7)
- INES - Institut für Energiesystemtechnik (2)
- IUAS - Institute for Unmanned Aerial Systems (1)
With major intellectual properties there is a long tradition of cross-media value chains -- usually starting with books and comics, then transgressing to film and TV and finally reaching interactive media like video games. In recent years the situation has changed: (1) smaller productions start to establish cross media value chains; (2) there is a trend from sequential towards parallel content production. In this work we describe how the production of a historic documentary takes a cross media approach right from the start. We analyze how this impacts the content creation pipelines with respect to story, audience and realization. The focus of the case study is the impact on the production of a documentary game. In a second step we reflect on the experiences gained so far and derive recommendations for future small-scale cross media productions.
Towards a gamification of industrial production: a comparative study in sheltered work environments
(2015)
Using video game elements to improve user experience and user engagement in non-game applications is called "gamification". This method of enriching human-computer interaction has been applied successfully in education, health and general business processes. However, it has not been established in industrial production so far.
After discussing the requirements specific for the production domain we present two workplaces augmented with gamification. Both implementations are based on a common framework for context-aware assistive systems but exemplify different approaches: the visualization of work performance is complex in System 1 and simple in System 2.
Based on two studies in sheltered work environments with impaired workers, we analyze and compare the systems' effects on work and on workers. We show that gamification leads to a speed-accuracy-tradeoff if no quality-related feedback is provided. Another finding is that there is a highly significant raise in acceptance if a straightforward visualization approach for gamification is used.
With projectors and depth cameras getting cheaper, assistive systems in industrial manufacturing are becoming increasingly ubiquitous. As these systems are able to continuously provide feedback using in-situ projection, they are perfectly suited for supporting impaired workers in assembling products. However, so far little research has been conducted to understand the effects of projected instructions on impaired workers. In this paper, we identify common visualizations used by assistive systems for impaired workers and introduce a simple contour visualization. Through a user study with 64 impaired participants we compare the different visualizations to a control group using no visual feedback in a real world assembly scenario, i.e. assembling a clamp. Furthermore, we introduce a simplified version of the NASA-TLX questionnaire designed for impaired participants. The results reveal that the contour visualization is significantly better in perceived mental load and perceived performance of the participants. Further, participants made fewer errors and were able to assemble the clamp faster using the contour visualization compared to a video visualization, a pictorial visualization and a control group using no visual feedback.
Design approaches for the gamification of production environments: a study focusing on acceptance
(2015)
Gamification is an ever more popular method to increase motivation and user experience in real-world settings. It is widely used in the areas of marketing, health and education. However, in production environments, it is a new concept. To be accepted in the industrial domain, it has to be seamlessly integrated in the regular work processes.
In this work we make the following contributions to the field of gamification in production: (1) we analyze the state of the art and introduce domain-specific requirements; (2) we present two implementations gamifying production based on alternative design approaches; (3) these are evaluated in a sheltered work organization. The comparative study focuses acceptance, motivation and perceived happiness.
The results reveal that a pyramid design showing each work process as a step on the way towards a cup at the top is strongly preferred to a more abstract approach where the processes are represented by a single circle and two bars.
In this work we provide an overview of gamification, i.e. the application of methods from game design to enrich non-gaming processes. The contribution is divided into five subsections: an introduction focusing on the progression of gamification through the hype cycle in the recent years (1), a brief introduction to gamification mechanics (1) and an overview of the state of the art in established areas (3). The focus is a discussion of more recent attempts of gamification in service and production (4). We also discuss the ethical implications (5) and the future perspectives (6) of gamified business processes. Gamification has been successfully applied in the domains education (serious games) and health (exergames) and is spreading to other areas. In recent years there have been various attempts to “gamify” business processes. While the first efforts date back as far as the collection of miles in frequent flyer programs, we will portray some of the more recent and comprehensive software-based approaches in the service industry, e.g. the gamification of processes in sales and marketing. We discuss their accomplishments as well as their social and ethical implicatio. Finally a very recent approach is presented: the application of gamification in the domain of industrial production. We discuss the special requirements in this domain and the effects on the business level and on the users. We conclude with a prognosis on the future development of gamification.
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
The Effect of Gamification on Emotions - The Potential of Facial Recognition in Work Environmentsns
(2015)
Gamification means using video game elements to improve user experience and user engagement in non-game services and applications. This article describes the effects when gamification is used in work contexts. Here we focus on industrial production. We describe how facial recognition can be employed to measure and quantify the effect of gamification on the users’ emotions.
The quantitative results show that gamification significantly reduces both task completion time and error rate. However, the results concerning the effect on emotions are surprising. Without gamification there are not only more unhappy expressions (as to expect) but surprisingly also more happy expressions. Both findings are statistically highly significant.
We think that in redundant production work there are generally more (negative) emotions involved. When there is no gamification happy and unhappy balance each other. In contrast gamification seems to shift the spectrum of moods towards “relaxed”. Especially for work environments such a calm attitude is a desirable effect on the users. Thus our findings support the use of gamification.
Video game developers continuously increase the degree of details and realism in games to create more human-like characters. But increasing the human-likeness becomes a problem in regard to the Uncanny Valley phenomenon that predicts negative feelings of people towards artificial entities. We developed an avatar creation system to examine preferences towards parametrized faces and explore in regard to the Uncanny Valley phenomenon how people design faces that they like or reject. Based on the 3D model of the Caucasian average face, 420 participants generate 1341 faces of positively and negatively associated concepts of both gender. The results show that some characteristics associated with the Uncanny Valley are used to create villains or repulsive faces. Heroic faces get attractive features but are rarely and little stylized. A voluntarily designed face is very similar to the heroine. This indicates that there is a tendency of users to design feminine and attractive but still credible faces.
Wireless sensor networks have recently found their way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researchers. Such monitoring applications, in general, don way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researc latency requirements regarding to the energy efficiency. Also a challenge of this application is the network topology as the application should be able to be deployed in very large scale. Nevertheless low power consumption of the devices making up the network must be on focus in order to maximize the lifetime of the whole system. These devices are usually battery-powered and spend most of their energy budget on radio transceiver module. A so-called Wake-On-Radio (WoR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, some designs for integration of WOR into IEEE 802.1.5.4 are to be discussed, providing an overview of trade-offs in energy consumption while deploying the WoR schemes in a monitoring system.
Environmental Monitoring is an attractive application field for Wireless Sensor Network (WSN). Water Level Monitoring helps to increase the efficiency of water distribution and management. In Pakistan, the world’s largest irrigation system covers 90.000 km of channels which needs to be monitored and managed on different levels. Especially the sensor systems for the small distribution channels need to be low energy and low cost. The distribution presents a technical solution for a communication system which is developed in a research project being co-funded by German Academic Exchange Service (DAAD). The communication module is based on IEEE-802.15.4 transceivers which are enhanced through Wake-On-Radio (WOR) to combine low-energy and real-time behavior. On higher layers, IPv6 (6LoWPAN) and corresponding routing protocols like Routing Protocol for Low power and Lossy Networks (RPL) can extend range of the network. The data are stored in a database and can be viewed online via a web interface. Of course, also automatic data analysis can be performed.
We report the use of the Raman spectral information of the chemical compound toluene C7H8 as a reference on the analysis of laboratory-prepared and commercially acquired gasoline-ethanol blends. The rate behavior of the characteristic Raman lines of toluene and gasoline has enabled the approximated quantification of this additive in commercial gasoline-ethanol mixtures. This rate behavior has been obtained from the Raman spectra of gasoline-ethanol blends with different proportions of toluene.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
The application of leaky feeder (radiating) cables is a common solution for the implementation of reliable radio communication in huge industrial buildings, tunnels and mining environment. This paper explores the possibilities of leaky feeders for 1D and 2D localization in wireless systems based on time of flight chirp spread spectrum technologies. The main focus of this paper is to present and analyse the results of time of flight and received signal strength measurements with leaky feeders in indoor and outdoor conditions. The authors carried out experiments to compare ranging accuracy and radio coverage area for a point-like monopole antenna and for a leaky feeder acting as a distributed antenna. In all experiments RealTrac equipment based on nanoLOC radio standard was used. The estimation of the most probable path of a chirp signal going through a leaky feeder was calculated using the ray tracing approach. The typical non-line-of-sight errors profiles are presented. The results show the possibility to use radiating cables in real time location technologies based on time-of-flight method.
We provide a privacy-friendly cloud-based smart metering storage architecture which provides few-instance storage on encrypted measurements by at the same time allowing SQL queries on them. Our approach is most flexible with respect to two axes: on the one hand it allows to apply filtering rules on encrypted data with respect to various upcoming business cases; on the other hand it provides means for a storage-efficient handling of encrypted measurements by applying server-side deduplication techniques over all incoming smart meter measurements. Although the work at hand is purely dedicated to a smart metering architecture we believe our approach to have value for a broader class of IoT cloud storage solutions. Moreover, it is an example for Privacy-by-design supporting the positive-sum paradigm.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
Distribution of esophageal interventricular conduction delays in CRT patients and healthy subjects
(2015)
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things (IoT). Whereas the lower layers (IEEE802.15.4 and 6LoWPAN) are already well defined and consolidated with regard to frame formats, header compression, routing protocols and commissioning procedures, there is still an abundant choice of possibilities on the application layer. Currently, various groups are working towards standardization of the application layer, i.e. the ETSI Technical Committee on M2M, the IP for Smart Objects (IPSO) Alliance, Lightweight M2M (LWM2M) protocol of the Open Mobile Alliance (OMA), and OneM2M. This multitude of approaches leaves the system developer with the agony of choice. This paper selects, presents and explains one of the promising solutions, discusses its strengths and weaknesses, and demonstrates its implementation.
Additive Manufacturing of High-Strength components using impregnated polymer plaster composites
(2015)
The overview of public key infrastructure based security approaches for vehicular communications
(2015)
Enthält die Artikel:
"CPU-based Covert- and Side-Channels in Cloud Ecosystems" von Johann Betz und Dirk Westhoff, S. 19-23
"The overview of Public Key Infrastructure based security approaches for vehicular communications" von Artem Yushev und Axel Sikora, S. 30-35
"Testing Embedded TLS Implementations Using Fuzzing Techniques and Differential Testing" von Andreas Walz und Axel Sikora, S. 36-40
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.
Eye-Tracking-Analyse des Betrachtungsverhaltens bei Micro-Präsentationen in der CAE-Ausbildung
(2015)
Theoretical details about optics and photonics are not common knowledge nowadays. Physicists are keen to scientifically explain ‘light,’ which has a huge impact on our lives. It is necessary to examine it from multiple perspectives and to make the knowledge accessible to the public in an interdisciplinary, scientifically well-grounded and appealing medial way. To allow an information exchange on a global scale, our project “Invisible Light” establishes a worldwide accessible platform. Its contents will not be created by a single instance, but user-generated, with the help of the global community. The article describes the infotainment portal “Invisible Light,” which stores scientific articles about light and photonics and makes them accessible worldwide. All articles are tagged with geo-coordinates, so they can be clearly identified and localized. A smartphone application is used for visualization, transmitting the information to users in real time by means of an augmented reality application. Scientific information is made accessible for a broad audience and in an attractive manner.
In this paper an RFID/NFC (ISO 15693 standard) based inductively powered passive SoC (system on chip) for biomedical applications is presented. A brief overview of the system design, layout techniques and verification method is dis-cussed here. The SoC includes an integrated 32 bit microcontroller, sensor interface circuit, analog to digital converter, integrated RAM, ROM and some other peripherals required for the complete passive operation. The entire chip is realized in CMOS 0.18 μm technology with a chip area of 1.52mm x 3.24 mm.
Covert and Side-Channels have been known for a long time due to their versatile forms of appearance. For nearly every technical improvement or change in technology, such channels have been (re-)created or known methods have been adapted. For example the introduction of hyperthreading technology has introduced new possibilities for covert communication between malicious processes because they can now share the arithmetic logical unit (ALU) as well as the L1 and L2 cache which enables establishing multiple covert channels. Even virtualization which is known for its isolation of multiple machines is prone to covert and side-channel attacks due to the sharing of resources. Therefore itis not surprising that cloud computing is not immune to this kind of attacks. Even more, cloud computing with multiple, possibly competing users or customers using the same shared resources may elevate the risk of unwanted communication. In such a setting the ”air gap” between physical servers and networks disappears and only the means of isolation and virtual separation serve as a barrier between adversary and victim. In the work at hand we will provide a survey on weak spots an adversary trying to exfiltrate private data from target virtual machines could exploit in a cloud environment. We will evaluate the feasibility of example attacks and point out possible mitigation solutions if they exist.