Refine
Year of publication
- 2017 (66) (remove)
Document Type
- Conference Proceeding (66) (remove)
Keywords
- CRT (2)
- CST (2)
- Gamification (2)
- HF-Ablation (2)
- Affective Computing (1)
- Aktivierung (1)
- Arbeitswissenschaft (1)
- Computer Games (1)
- Context-Awareness (1)
- Data mining (1)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (25)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (19)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (11)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (11)
- Fakultät Medien und Informationswesen (M+I) (10)
- ACI - Affective and Cognitive Institute (4)
- Zentrale Einrichtungen (2)
Message co chairmen
(2017)
The Bluetooth community is in the process to develop mesh technology. This is highly promising as Bluetooth is widely available in Smart Phones and Tablet PCs, allowing an easy access to the Internet of Things. In this paper work, we investigate the performance of Bluetooth enabled mesh networking that we performed to identify the strengths and weaknesses. A demonstrator for this protocol has been implemented by using the Fruity Mesh protocol implementation. Extensive test cases have been executed to measure the performance, the reliability, the power consumption and the delay. For this, an Automated Physical Testbed (APTB), which emulates the physical channels has been used. The results of these measurements are considered useful for the real implementation of Bluetooth; not only for home and building automation, but also for industrial automation.
Computing Aggregates on Autonomous, Self-organizing Multi-Agent System: Application "Smart Grid"
(2017)
Decentralized data aggregation plays an important role in
estimating the state of the smart grid, allowing the determination of
meaningful system-wide measures (such as the current power generation,
consumption, etc.) to balance the power in the grid environment. Data
aggregation is often practicable if the aggregation is performed effectively. However, many existing approaches are lacking in terms of fault-tolerance. We present an approach to construct a robust self-organizing
overlay by exploiting the heterogeneous characteristics of the nodes and
interlinking the most reliable nodes to form an stable unstructured overlay. The network structure can recover from random state perturbations
in finite time and tolerates substantial message loss. Our approach is
inspired from biological and sociological self-organizing mechanisms.
Process engineering focuses on the design, operation, control and optimization of chemical, physical and biological processes and has applications in many industries. Process Intensification is the key development approach in the modern process engineering. The proposed Advanced Innovation Design Approach (AIDA) combines the holistic innovation process with the systematic analytical and problem solving tools of the theory of inventive problem solving TRIZ. The present paper conceptualizes the AIDA application in the field of process engineering and especially in combination with the Process Intensification. It defines the AIDA innovation algorithm for process engineering and describes process mapping, problem ranking, and concept design techniques. The approach has been validated in several industrial case studies. The presented research work is a part of the European project “Intensified by Design® platform for the intensification of processes involving solids handling”.
The paper is addressing the needs of the universities regarding qualification of students as future R&D specialists in efficient techniques for successfully running innovation process. In comparison with the engineers, the students often demonstrate lower motivation in learning systematic inventive techniques, like for example TRIZ methodology, and prefer random brainstorming for idea generation. The quality of obtained solutions also depends on the level of completeness of the problem analysis, which is more complex and time consuming in the case of interdisciplinary systems. The paper briefly describes one-semester-course of 60 hours in new product development with the Advanced Innovation Design Approach and TRIZ methodology, in which a typical industrial innovation process for one selected interdisciplinary mechatronic product is modelled.
In the course of the last few years, our students are becoming increasingly unhappy. Sometimes they stop attending lectures and even seem not to know how to behave correctly. It feels like they are getting on strike. Consequently, drop-out rates are sky-rocketing. The lecturers/professors are not happy either, adopting an “I-don’t-care” attitude.
An interdisciplinary, international team set in to find out: (1) What are the students unhappy about? Why is it becoming so difficult for them to cope? (2) What does the “I-don’t-care” attitude of professors actually mean? What do they care or not care about? (3) How far do the views of the parties correlate? Could some kind of mutual understanding be achieved?
The findings indicate that, at least at our universities, there is rather a long way to go from “Engineering versus Pedagogy” to “Engineering Pedagogy”.
Background: The electrical field (E-field) of the biventricular (BV) stimulation is important for the success of cardiac resynchronization therapy (CRT) in patients with cardiac insufficiency and widened QRS complex. The 3D modeling allows the simulation of CRT and high frequency (HF) ablation.
Purpose: The aim of the study was to model different pacing and ablation electrodes and to integrate them into a heart model for the static and dynamic simulation of atrial and BV stimulation and high frequency (HF) ablation in atrial fibrillation (AF).
Methods: The modeling and simulation was carried out using the electromagnetic simulation software CST (CST Darmstadt). Five multipolar left ventricular (LV) electrodes, one epicardial LV electrode, four bipolar right atrial (RA) electrodes, two right ventricular (RV) electrodes and one HF ablation catheter were modeled. Selected electrodes were integrated into the Offenburg heart rhythm model for the electrical field simulation. The simulation of an AV node ablation at CRT was performed with RA, RV and LV electrodes and integrated ablation catheter with an 8 mm gold tip.
Results: The right atrial stimulation was performed with an amplitude of 1.5 V with a pulse width of 0.5. The far-field potentials generated by the atrial stimulation were perceived by the right and left ventricular electrode. The far-field potential at a distance of 1 mm from the right ventricular electrode tip was 36.1 mV. The far-field potential at a distance of 1 mm from the left ventricular electrode tip was measured with 37.1 mV. The RV and LV stimulation were performed simultaneously at amplitude of 3 V at the LV electrode and 1 V at the RV electrode with a pulse width of 0.5 ms each. The far-field potentials generated by the BV stimulations could be perceived by the RA electrode. The far-field potential at the RA electrode tip was 32.86 mV. AV node ablation was simulated with an applied power of 5 W at 420 kHz and 10 W at 500 kHz at the distal 8 mm ablation electrode.
Conclusions: Virtual heart and electrode models as well as the simulations of electrical fields and temperature profiles allow the static and dynamic simulation of atrial synchronous BV stimulation and HF ablation at AF. The 3D simulation of the electrical field and temperature profile may be used to optimize the CRT and AF ablation.
Three real-lab trigeneration microgrids are investigated in non-residential environments (educational, office/administrational, companies/production) with a special focus on domain-specific load characteristics. For accurate load forecasting on such a local level, à priori information on scheduled events have been combined with statistical insight from historical load data (capturing information on not explicitly-known consumer behavior). The load forecasts are then used as data input for (predictive) energy management systems that are implemented in the trigeneration microgrids. In real-world applications, these energy management systems must especially be able to carry out a number of safety and maintenance operations on components such as the battery (e.g. gassing) or CHP unit (e.g. regular test runs). Therefore, energy management systems should combine heuristics with advanced predictive optimization methods. Reducing the effort in IT infrastructure the main and safety relevant management process steps are done on site using a Smart & Local Energy Controller (SLEC) assisted by locally measured signals or operator given information as default and external inputs for any advanced optimization. Heuristic aspects for local fine adjustment of energy flows are presented.
The electrical field (E-field) of the biventricular (BV) stimulation is important for the success of cardiac resynchronization therapy (CRT) in patients with cardiac insufficiency and widened QRS complex.
The aim of the study was to model different pacing and ablation electrodes and to integrate them into a heart model for the static and dynamic simulation of BV stimulation and HF ablation in atrial fibrillation (AF).
The modeling and simulation was carried out using the electromagnetic simulation software CST. Five multipolar left ventricular (LV) electrodes, four bipolar right atrial (RA) electrodes, two right ventricular (RV) electrodes and one HF ablation catheter were modelled. A selection were integrated into the heart rhythm model (Schalk, Offenburg) for the electrical field simulation. The simulation of an AV node ablation at CRT was performed with RA, RV and LV electrodes and integrated ablation catheter with an 8 mm gold tip.
The BV stimulation were performed simultaneously at amplitude of 3 V at the LV electrode and 1 V at the RV electrode with a pulse width of 0.5 ms each. The far-field potential at the RA electrode tip was 32.86 mV and 185.97 mV at a distance of 1 mm from the RA electrode tip. AV node ablation was simulated with an applied power of 5 W at 420 kHz at the distal ablation electrode. The temperature at the catheter tip was 103.87 °C after 5 s ablation time and 37.61 °C at a distance of 2 mm inside the myocardium. After 15 s, the temperature was 118.42 °C and 42.13 °C.
Virtual heart and electrode models as well as the simulations of electrical fields and temperature profiles allow the static and dynamic simulation of atrial synchronous BV stimulation and HF ablation at AF and could be used to optimize the CRT and AF ablation.
Spectral analysis of signal averaging electrocardiography in atrial and ventricular tachyarrhythmias
(2017)
Background: Targeting complex fractionated atrial electrograms detected by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardiography (ECG) allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm uses automatic ECG trigger function for signal averaged transthoracic, transesophageal and intracardiac ECG signals with novel LabVIEW software (National Instruments, Austin, Texas, USA). For spectral analysis we used fast fourier transformation in combination with spectro-temporal mapping and wavelet transformation for evaluation of detailed information about the frequency and intensity of high frequency atrial and ventricular signals.
Results: Spectral-temporal mapping and wavelet transformation of the signal averaged ECG allowed the evaluation of high frequency fractionated atrial signals in patients with atrial fibrillation and high frequency ventricular signals in patients with ventricular tachycardia. The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex. The combination of analysis in the time and frequency domain allowed the evaluation of fractionated signals during atrial and ventricular conduction.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial electrograms may be useful parameters to evaluate electrical cardiac arrhythmogenic signals in atrial fibrillation ablation.
In this paper we present the implementation of a model-predictive controller (MPC)
for real-time control of a cable-robot-based motion simulator. The controller computes control
inputs such that desired acceleration and rotational velocity at a dened point in simulator's
cabin are tracked while satisfying constraints due to working space and allowed cable forces of
the robot. The tracking performance and computation time of the algorithm are investigated
in computer simulations. Furthermore, for motion simulation scenarios where the reference
trajectories are not known beforehand, we derive an estimate on how much motion simulation
delity can maximally be improved by any reference prediction scheme compared to the case
when no prediction scheme is applied.
The need to measure basic aerosol parameters has increased dramatically in the last decade. This is due mainly to their harmful effect on the environment and on public health. Legislation requires that particle emissions and ambient levels, workplace particle concentrations and exposure to them are measured to confirm that the defined limits are met and the public is not exposed to harmful concentrations of aerosols.
Climate change and resultant scarcity of water are becoming major challenges for countries around the world. With the advent of Wireless Sensor Networks (WSN) in the last decade and a relatively new concept of Internet of Things (IoT), embedded systems developers are now working on designing control and automation systems that are lower in cost and more sustainable than the existing telemetry systems for monitoring. The Indus river basin in Pakistan has one of the world's largest irrigation systems and it is extremely challenging to design a low-cost embedded system for monitoring and control of waterways that can last for decades. In this paper, we present a hardware design and performance evaluation of a smart water metering solution that is IEEE 802.15.4-compliant. The results show that our hardware design is as powerful as the reference design, but allows for additional flexibility both in hardware and in firmware. The indigenously designed solution has a power added efficiency (PAE) of 24.7% that is expected to last for 351 and 814 days for nodes with and without a power amplifier (PA). Similarly, the results show that a broadband communication (434 MHz) over more than 3km can be supported, which is an important stepping stone for designing a complete coverage solution of large-scale waterways.
Due to climate change and scarcity of water reservoirs, monitoring and control of irrigation systems is now becoming a major focal area for researchers in Cyber-Physical Systems (CPS). Wireless Sensor Networks (WSNs) are rapidly finding their way in the field of irrigation and play the key role as data gathering technology in the domain of IoT and CPS. They are efficient for reliable monitoring, giving farmers an edge to take precautionary measures. However, designing an energy-efficient WSN system requires a cross-layer effort and energy-aware routing protocols play a vital role in the overall energy optimization of a WSN. In this paper, we propose a new hierarchical routing protocol suitable for large area environmental monitoring such as large-scale irrigation network existing in the Punjab province of Pakistan. The proposed protocol resolves the issues faced by traditional multi-hop routing protocols such as LEACH, M-LEACH and I-LEACH, and enhances the lifespan of each WSN node that results in an increased lifespan of the whole network. We used the open-source NS3 simulator for simulation purposes and results indicate that our proposed modifications result in an average 27.8% increase in lifespan of the overall WSN when compared to the existing protocols.
eTPL: An Enhanced Version of the TLS Presentation Language Suitable for Automated Parser Generation
(2017)
The specification of the Transport Layer Security (TLS) protocol defines its own presentation language used for the purpose of semi-formally describing the structure and on-the-wire format of TLS protocol messages. This TLS Presentation Language (TPL) is more expressive and concise than natural language or tabular descriptions, but as a result of its limited objective has a number of deficiencies. We present eTPL, an enhanced version of TPL that improves its expressiveness, flexibility, and applicability to non-TLS scenarios. We first define a generic model that describes the parsing of binary data. Based on this, we propose language constructs for TPL that capture important information which would otherwise have to be picked manually from informal protocol descriptions. Finally, we briefly introduce our software tool etpl-tool which reads eTPL definitions and automatically generates corresponding message parsers in C++. We see our work as a contribution supporting sniffing, debugging, and rapid-prototyping of wired and wireless communication systems.
The Thread protocol is a recent development based on 6LoWPAN (IPv6 over IEEE 802.15.4), but with extensions regarding a more media independent approach, which – additionally – also promises true interoperability. To evaluate and analyse the operation of a Thread network a given open source 6LoWPAN stack for embedded devices (emb::6) has been extended in order to comply with the Thread specification. The implementation covers Mesh Link Establishment (MLE) and network layer functionality as well as 6LoWPAN mesh under routing mechanism based on MAC short addresses. The development has been verified on a virtualization platform and allows dynamical establishment of network topologies based on Thread's partitioning algorithm.
OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.
Legacy industrial communication protocols are proved robust and functional. During the last decades, the industry has invented completely new or advanced versions of the legacy communication solutions. However, even with the high adoption rate of these new solutions, still the majority industry applications run on legacy, mostly fieldbus related technologies. Profibus is one of those technologies that still keep on growing in the market, albeit a slow in market growth in recent years. A retrofit technology that would enable these technologies to connect to the Internet of Things, utilize the ever growing potential of data analysis, predictive maintenance or cloud-based application, while at the same time not changing a running system is fundamental.
The paper describes the hardware and software architecture of the developed multi MEMS sensor prototype module, consisting of ARM Cortex M4 STM32F446 microcontroller unit, five 9-axis inertial measurement units MPU9255 (3D accelerometer, 3D gyroscope, 3D magnetometer and temperature sensor) and a BMP280 barometer. The module is also equipped with WiFi wireless interface (Espressif ESP8266 chip). The module is constructed in the form of a truncated pyramid. Inertial sensors are mounted on a special basement at different angles to each other to eliminate hardware sensors drifts and to provide the capability for self-calibration. The module fuses information obtained from all types of inertial sensors (acceleration, rotation rate, magnetic field and air pressure) in order to calculate orientation and trajectory. It might be used as an Inertial Measurement Unit, Vertical Reference Unit or Attitude and Heading Reference System.
The low cost and small size of MEMS inertial sensors allows their combination into a multi sensor module in order to improve performance. However the different linear accelerations measured on different places on a rotating rigid body have to be considered for the proper fusion of the measurements. The errors in measurement of MEMS inertial sensors include deterministic imperfection, but also random noise. The gain in accuracy of using multiple sensors depends strongly on the correlation between these errors from the different sensors. Although for sensor fusion it usually assumed that the measurement errors of different sensors are uncorrelated, estimation theory shows that for the combination of the same type of sensors actually a negative correlation will be more beneficial. Therefore we describe some important and often neglected considerations for the combination of several sensors and also present some preliminary results with regard to the correlation of measurements from a simple multi sensor setup.
For the RoboCup Soccer AdultSize League the humanoid robot Sweaty uses a single fully convolutional neural network to detect and localize the ball, opponents and other features on the field of play. This neural network can be trained from scratch in a few hours and is able to perform in real-time within the constraints of computational resources available on the robot. The time it takes to precess an image is approximately 11 ms. Balls and goal posts are recalled in 99 % of all cases (94.5 % for all objects) accompanied by a false detection rate of 1.2 % (5.2 % for all). The object detection and localization helped Sweaty to become finalist for the RoboCup 2017 in Nagoya.
One of the challenges in humanoid robotics is motion control. Interacting with humans requires impedance control algorithms, as well as tackling the problem of the closed kinematic chains which occur when both feet touch the ground. However, pure impedance control for totally autonomous robots is difficult to realize, as this algorithm needs very precise sensors for force and speed of the actuated parts, as well as very high sampling rates for the controller input signals. Both requirements lead to a complex and heavy weight design, which makes up for heavy machines unusable in RoboCup Soccer competitions.
A lightweight motor controller was developed that can be used for admittance and impedance control as well as for model predictive control algorithms to further improve the gait of the robot.
Simulation-based degradation assessment of lithium-ion batteries in a hybrid electric vehicle
(2017)
The insufficient lifetime of lithium-ion batteries is one of the major cost driver for mobile applications. The battery pack in vehicles is one of the most expensive single components that practically must be excluded from premature replacement (i.e., before the life span of the other components end). Battery degradation is a complex physicochemical process that strongly depends on operating condition and environment. We present a simulation-based analysis of lithium-ion battery degradation during operation with a standard PHEV test cycle. We use detailed multiphysics (extended Newman-type) cell models that allow the assessment of local electrochemical potential, species and temperature distributions as driving forces for degradation, including solid electrolyte interphase (SEI) formation [1]. Fig. 1 shows an exemplary test cycle and the predicted resulting spatially-averaged SEI formation rate. We apply a time-upscaling approach to extrapolate the degradation analysis over long time scales, keeping physical accuracy while allowing end-of-life assessment [2]. Results are presented for lithium-ion battery cells with graphite/LFP chemistry. The behavior of these cells in terms of degradation propensity, performance, state of charge and other internal states is predicted during long-term cycling. State of health (SOH) is quantified as capacity fade and internal resistance increase as function of operation time.
Practical bottlenecks associated with commercialization of Lithium-air cells include capacity limitation and low cycling efficiency. The origin of such losses can be traced to complex electrochemical side reactions and reactant mass transport losses[1]. The efforts to minimize such losses include exploration of various electrolytes with additives[2], and cell component geometry and material design. Given the wide range of options for such materials, it is almost impractical to experimentally setup and characterize all those cells. Consequently, modeling and simulation studies are efficient alternatives to analyze spatially and temporally resolved cell behavior for various combinations of materials[3]. In this study, with the help of a two-dimensional multi physics model, we have focused on the effect of electrode and electrolyte interaction (electrochemistry), choice of electrolyte (species transport), and electrode geometry (electrode design) on the performance of a lithium-air button cell. Figure1a shows the schematics of the 2D axisymmetric computational domain. A comparative analysis of five different electrolytes was performed while focusing on the 2D distribution of local current density and the concentration of electro-chemically active species in the cell, that is, O2and Li+. Using two different cathode configurations, namely, flooded electrode and gas diffusion electrode (GDE)[4] at different cathode thickness, the effect of cell geometry and electrolyte saturation on cell performance was explored. Further, a detailed discussion on electrode volume utilization (cf. Figure1b) is presented via changes in the active volume of cathode that produces 90% of the total current with the cell current density for different combinations of electrolyte saturations and cathode thickness.
Simulation-based degradation assessment of lithium-ion batteries in a hybrid electric vehicle
(2017)
A novel approach of a test environment for embedded networking nodes has been conceptualized and implemented. Its basis is the use of virtual nodes in a PC environment, where each node executes the original embedded code. Different nodes run in parallel, connected via so-called virtual channels. The environment allows to modifying the behavior of the virtual channels as well as the overall topology during runtime to virtualize real-life networking scenarios. The presented approach is very efficient and allows a simple description of test cases without the need of a network simulator. Furthermore, it speeds up the process of developing new features as well as it supports the identification of bugs in wireless communication stacks. In combination with powerful test execution systems, it is possible to create a continuous development and integration flow.
Background: The electrical field (E-field) of the biventricular (BV) stimulation is essential for the success of cardiac resynchronization therapy (CRT) in patients with cardiac insufficiency and widened QRS complex. 3D modeling allows the simulation of CRT and high frequency (HF) ablation.
Purpose: The aim of the study was to model different pacing and ablation electrodes and to integrate them into a heart model for the static and dynamic simulation of BV stimulation and HF ablation in atrial fibrillation (AF).
Methods: The modeling and simulation was carried out using the electromagnetic simulation software. Five multipolar left ventricular (LV) electrodes, one epicardial LV electrode, four bipolar right atrial (RA) electrodes, two right ventricular (RV) electrodes and one HF ablation catheter were modeled. Different models of electrodes were integrated into a heart rhythm model for the electrical field simulation (fig.1). The simulation of an AV node ablation at CRT was performed with RA, RV and LV electrodes and integrated ablation catheter with an 8 mm gold tip.
Results: The RV and LV stimulation were performed simultaneously at amplitude of 3 V at the LV electrode and 1 V at the RV electrode, each with a pulse width of 0.5 ms. The far-field potentials generated by the BV stimulations were perceived by the RA electrode. The far-field potential at the RA electrode tip was 32.86 mV. A far-field potential of 185.97 mV resulted at a distance of 1 mm from the RA electrode tip. AV node ablation was simulated with an applied power of 5 W at 420 kHz at the distal 8 mm ablation electrode. The temperature at the catheter tip was 103.87 ° C after 5 s ablation time, 44.17 ° C from the catheter tip in the myocardium and 37.61 ° C at a distance of 2 mm. After 10 s, the temperature at the three measuring points described above was 107.33 ° C, 50.87 ° C, 40.05 ° C and after 15 seconds 118.42 ° C, 55.75 ° C and 42.13 ° C.
Conclusions: Virtual heart and electrode models as well as the simulations of electrical fields and temperature profiles allow the static and dynamic simulation of atrial synchronous BV stimulation and HF ablation at AF. The 3D simulation of the electrical field and temperature profile may be used to optimize the CRT and AF ablation.
Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products (e.g., fuel cells, metal/air cells, electrolyzers) offer an additional observable, that is, the gas pressure. The dynamic coupling of current and/or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. This sensitivity can be exploited for model parameterization and validation. A general analysis of EPIS is presented, which shows the necessity of model-based interpretation of the complex EPIS shapes in the Nyquist plot (cf. Figure). We then present EPIS simulations for two different electrochemical cells: (1) a sodium/oxygen battery cell and (2) a hydrogen/air fuel cell. We use 1D or 2D electrochemical and transport models to simulate current excitation/pressure detection or pressure excitation/voltage detection. The results are compared to first EPIS experimental data available in literature [2,3].
Zerstörungsfreie Verfahren zur Messung von Eigenspannungen
erfordern, abhängig vom gewählten Verfahren, die Kenntnis gewisser
Kopplungskonstanten. Im Falle von Ultraschallmessverfahren sind das neben den
elastischen Konstanten zweiter Ordnung (SOEC) vor allem die Konstanten dritter
Ordnung (TOEC). Elastische Konstanten fester, metallischer Bauteile werden in der
Regel in Zugversuchen bestimmt. Zur Ermittlung der TOEC werden diese mit
Ultraschallmessmethoden kombiniert. Durch äußere Einflüsse, wie etwa mechanische
Nachbehandlungen der zu untersuchenden Bauteile können sich diese Konstanten
jedoch ändern und müssen folglich direkt am veränderten Material bestimmt werden.
Mithilfe von Simulationen wird die Ausbreitung der zweiten Harmonischen und
der nichtlinear erzeugten Oberflächenwellen in Wellenmischexperimenten analysiert
und der akustische Nichtlinearitätsparameter (ANP) bzw. der Kopplungsparameter
aus der Amplitudenentwicklung berechnet. Insbesondere wird untersucht, welchen
Einfluss ein gegebenes Tiefenprofil der TOEC auf den ANP hat (Vorwärtsproblem)
und inwiefern sich aus den Messungen des ANP auf ein vorliegendes Tiefenprofil der
TOEC schließen lässt (inverses Problem). Außerdem wird diskutiert, welchen
Einfluss lokale Änderungen der SOEC auf den ANP haben können und wie groß diese
Änderungen sein dürfen, um die TOEC dennoch bestimmen zu können. Die
Untersuchungen hierzu wurden auf der Basis eines 3D-FEM Modells mit zufällig
orientierten Mikrorissen durchgeführt. Die numerischen Rechnungen zeigen dabei
auch eine gute Übereinstimmung mit einem aus der Literatur bekannten und für dieses
Problem erweiterten, analytischen Modell. Neben der rissinduzierten Nichtlinearität
kann bei diesem auch die Gitternichtlinearität berücksichtigt werden.
Elastic constants of components are usually determined by tensile tests in combination with ultrasonic
experiments. However, these properties may change due to e.g. mechanical treatments or service conditions during
their lifetime. Knowledge of the actual material parameters is key to the determination of quantities like residual
stresses present in the medium. In this work the acoustic nonlinearity parameter (ANP) for surface acoustic waves is
examined through the derivation of an evolution equation for the amplitude of the second harmonic. Given a certain
depth profile of the third-order elastic constants, the dependence of the ANP with respect to the input frequency is
determined and on the basis of these results, an appropriate inversion method is developed. This method is intended
for the extraction of the depth dependence of the third-order elastic constants of the material from second-harmonic
generation and guided wave mixing experiments, assuming that the change in the linear Rayleigh wave velocity is
small. The latter assumption is supported by a 3D-FEM model study of a medium with randomly distributed microcracks as well as theoretical works on this topic in the literature.
A novel approach of a testbed for embedded networking nodes has been conceptualized and implemented. It is based on the use of virtual nodes in a PC environment, where each node executes the original embedded code. Different nodes are running in parallel and are connected via so-called virtual interfaces. The presented approach is very efficient and allows a simple description of test cases without the need of a network simulator. Furthermore, it speeds up the process of developing new features.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
Applications helping us to maintain the focus on work are called “Zenware” (from concentration and Zen). While form factors, use cases and functionality vary, all these applications have a common goal: creating uninterrupted, focused attention on the task at hand. The rise of such tools exemplifies the users’ desire to control their attention within the context of omnipresent distraction. In expert interviews we investigate approaches in the context of attention-management at the workplace of knowledge workers. To gain a broad understanding, we use judgement sampling in interviews with experts from several disciplines. We especially explore how focus and flow can be stimulated. Our contribution has four components: a brief overview on the state of the art (1), a presentation of the results (2), strategies for coping with digital distractions and design guidelines for future Zenware (3) and an outlook on the overall potential in digital work environments (4).
Gamifying rehabilitation is an efficient way to improve motivation and exercise frequency. However, between flow theory, self-determination theory or Bartle's player types there is much room for speculation regarding the mechanics required for successful gamification, which in turn leads to increased motivation. For our study, we selected a gamified solution for motion training (an exergame) where the playful design elements are extremely simple. The contribution is three-fold: we show best practices from the state of the art, present a study analyzing the effects of simple gamification mechanics on a quantitative and on a qualitative level and discuss strategies for playful design in therapeutic movement games.
Designing Authentic Emotions for Non-Human Characters. A Study Evaluating Virtual Affective Behavior
(2017)
While human emotions have been researched for decades, designing authentic emotional behavior for non-human characters has received less attention. However, virtual behavior not only affects game design, but also allows creating authentic avatars or robotic companions. After a discussion of methods to model and recognize emotions, we present three characters with a decreasing level of human features and describe how established design techniques can be adapted for such characters. In a study, 220 participants assess these characters' emotional behavior, focusing on the emotion "anger". We want to determine how reliable users can recognize emotional behavior, if characters increasingly do not look and behave like humans. A secondary aim is determining if gender has an impact on the competence in emotion recognition. The findings indicate that there is an area of insecure attribution of virtual affective behavior not distant but close to human behavior. We also found that at least for anger, men and women assess emotional behavior equally well.
We present the design outline of a context-aware interactive system for smart learning in the STEM curriculum (science, technology, engineering, and mathematics). It is based on a gameful design approach and enables "playful coached learning" (PCL): a learning process enriched by gamification but also close to the learner's activities and emotional setting. After a brief introduction on related work, we describe the technological setup, the integration of projected visual feedback and the use of object and motion recognition to interpret the learner's actions. We explain how this combination enables rapid feedback and why this is particularly important for correct habit formation in practical skills training. In a second step, we discuss gamification methods and analyze which are best suited for the PCL system. Finally, emotion recognition, a major element of the final PCL design not yet implemented, is briefly outlined.
In this paper we show that a model-free approach to learn behaviors in joint space can be successfully used to utilize toes of a humanoid robot. Keeping the approach model-free makes it applicable to any kind of humanoid robot, or robot in general. Here we focus on the benefit on robots with toes which is otherwise more difficult to exploit. The task has been to learn different kick behaviors on simulated Nao robots with toes in the RoboCup 3D soccer simulator. As a result, the robot learned to step on its toe for a kick that performs 30% better than learning the same kick without toes.
In this paper, we present a frame synchronization method which consists of the non-orthogonal superposition of a synchronization sequence and the data. We derive the optimum detection criterion and compare it to the classical sequential concatenation of synchronization and data sequences. Computer simulations confirm the benefits of the non-orthogonal allocation for the case of short frames, which makes this technique particularly suited for the increasingly important regime of low latency and ultra-reliable communication.
Our university carries out various research projects. Among others, the project Schluckspecht is an interdisciplinary work
on different ultra-efficient car concepts for international contests. Besides the engineering work, one part of the project
deals with real-time data visualization. In order to increase the efficiency of the vehicle, an online monitoring of the
runtime parameters is necessary.
The driving parameters of the vehicle are transmitted to a processing station via a wireless network connection. We plan
to use an augmented reality (AR) application to visualize different data on top of the view of the real car.
By utilizing a mobile Android or iOS device a user can interactively view various real-time and statistical data. The car
and its components are meant to be augmented by various additional information, whereby that information should
appear at the correct position of the components. An engine e.g. could show the current rpm and consumption values. A
battery on the other hand could show the current charge level.
The goal of this paper is to evaluate different possible approaches, their suitability and to expand our application to other
projects at our university.
Wie man die Vorlesung "Technische Mechanik 1 - Statik" für alle Beteiligten dynamisch gestaltet
(2017)
Lehrende nehmen vielfältige Veränderungen, insbesondere bei Studienanfängern wahr: Vorkenntnisse, Aufnahme- und Konzentrationsfähigkeit werden zunehmend heterogener. In der Vorlesung „Technische Mechanik 1“ wurde darauf konstruktiv reagiert, indem der Ablauf und die Struktur verändert wurden. Aufgaben und ihre Lösungen stehen im Mittelpunkt des Unterrichts. Neben der Lehrenden als aktiv Handelnde wird jeder Studierende im Lauf des Semesters in den Ablauf integriert und muss individuelle Lösungen der verteilten Aufgaben präsentieren. Im Vergleich entwickeln die Studierenden durch „Lernen am Modell“ dadurch ihre methodischen und fachlichen Fähigkeiten weiter. Um den Studierenden die Relevanz der behandelten Themenbereiche zu verdeutlichen wurden spezielle Aufgaben mit einem lebensweltlichem Bezug entwickelt. Befragungen zeigen, dass die Studierenden von den vielfältigen interaktiven Lernangeboten profitieren und die entwickelten Kompetenzen auch auf andere Lernsituationen übertragen.
Finding clusters in high dimensional data is a challenging research problem. Subspace clustering algorithms aim to find clusters in all possible subspaces of the dataset where, a subspace is the subset of dimensions of the data. But exponential increase in the number of subspaces with the dimensionality of data renders most of the algorithms inefficient as well as ineffective. Moreover, these algorithms have ingrained data dependency in the clustering process, thus, parallelization becomes difficult and inefficient. SUBSCALE is a recent subspace clustering algorithm which is scalable with the dimensions and contains independent processing steps which can be exploited through parallelism. In this paper, we aim to leverage, firstly, the computational power of widely available multi-core processors to improve the runtime performance of the SUBSCALE algorithm. The experimental evaluation has shown linear speedup. Secondly, we are developing an approach using graphics processing units (GPUs) for fine-grained data parallelism to accelerate the computation further. First tests of the GPU implementation show very promising results.
Modelling and Simulation of Microscale Trigeneration Systems Based on Real- Life Experimental Data
(2017)
Biological in situ methanation: Gassing concept and feeding strategy for enhanced performance
(2017)
The expansion of fluctuating renewable electricity production from wind and solar energy requires huge storage capacities. Power-to-gas (PtG) can contribute to tackle that issue via a two-step process, the electrolytic production of hydrogen and a subsequent methanation step (with additional CO2). The resulting fully grid compatible methane, also known as synthetic natural gas (SNG), can be both stored and transported in the vast existing natural gas infrastructure.
To overcome current major drawbacks of PtG, the relatively low efficiency and the high costs, we developed an improved method for the methanation step. In our approach we use a further development of the biological in situ methanation of hydrogen in biogas plants. Because this strategy uses directly internal residual CO2 from the biogas process in the biogas plant, you neither need additional external CO2 nor special reactors. Thus, PtG is combined with the production of an upgraded highly methane rich raw biogas.
However, the low solubility of hydrogen in aqueous solutions and the exploitation of the maximum biological production rates are still an engineering challenge for high performance biological in situ methanation.
In our experiments a setup with membrane gassing turned out to be most promising to ensure a sufficient gas liquid mass transfer of the hydrogen. The monitoring of hydrogenotrophic and aceticlastic archaea showed some adaption of these microbial subgroups to the hydrogen feed.
In order to achieve high methane concentrations of more than 90 % in the raw biogas a CO2-controlled hydrogen feed flow rate is suggested. For methane concentrations lower than 90 % simple current controlled hydrogen supply can be applied.
In safety critical applications wireless technologies are not widely spread. This is mainly due to reliability and latency requirements. In this paper a new wireless architecture is presented which will allow for customizing the latency and reliability for every single participant within the network. The architecture allows for building up a network of inhomogeneous participants with different reliability and latency requirements. The used TDMA scheme with TDD as duplex method is acting gentle on resources. Therefore participants with different processing and energy resources are able to participate.
In medical applications wireless technologies are not widely spread. Today they are mainly used in non latency-critical applications where reliability can be guaranteed through retransmission protocols and error correction mechanisms. By using retransmission protocols within the disturbed shared wireless channel latency will increase. Therefore retransmission protocols are not sufficient for removing latency-critical wired connections within operating rooms such as foot switches. Todays research aims to improve reliability through the physical characteristics of the wireless channel by using diversity methods and more robust modulation. In this paper an Architecture for building up a reliable network is presented. The Architecture offers the possibility for devices with different reliability, latency and energy consumption requirements to participate. Furthermore reliability, latency and energy consumption are scalable for every single participant.