Refine
Year of publication
Document Type
- Conference Proceeding (246) (remove)
Language
- English (196)
- German (48)
- Multiple languages (1)
- Russian (1)
Keywords
- Kommunikation (7)
- Eingebettetes System (5)
- Applikation (4)
- Brennstoffzelle (4)
- Energieversorgung (4)
- Herzkrankheit (4)
- Sensortechnik (4)
- Haustechnik (3)
- Messtechnik (3)
- Signaltechnik (3)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246) (remove)
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
Since direct current high energy shock fulguration was initially performed in the mid 1980s, ablation of cardiac arrhythmias has come to widespread use. Today the most frequently used energy source for catheter ablation is radio frequency (RF). It was the German engineer Peter Osypka who made available the HAT 100 as the first simple commercial RF ablator.
Nevertheless, in the first years of ablation, physicians were effectively working in the dark. Until today with an increasing understanding of arrhythmia mechanisms, both at the atrial and ventricular levels, this curative technology has made tremendous progress. Now, due to crucial improvement of RF ablation generators, temperature and contact force sensor catheters in combination with non-flouroscopic electroanatomical mapping technologies, computerized temperature and impedance controlled radiofrequency catheter ablation can be used to cure all types of arrhythmias including atrial and ventricular fibrillation. For the latter, cooled ablation by saline solution irrigated catheters has been developed to a widely used standard method. This procedure resulting in pulmonary vein isolation requires transseptal puncture and is technically demanding. Nevertheless, it has shown to be more effective than antiarrhythmic drug therapy.
While earliest RF ablations were performed with non-steerable catheters, today are used steerable sensor catheters without or with external and internal cooling and tips of 4mm or 8mm length. Further innovations like integration of mapping and cardiac imaging give exact information of the number of pulmonary veins and branching patterns and help to correlate electrical signals with anatomical structures.
The magnetic navigation significantly improved the success rates and safety of catheter ablation. Thus, in most cases RF catheter ablation has developed in the treatment of supraventricular arrhythmias from an alternative approach to drug therapy into the first therapeutic choice providing low complication rates.
In future, robotic navigation will further simplify procedures and reduce radiation exposure of this curative approach.
Introduction: Despite lots of developments in the last years, radiofrequency ablation of rhythm diseases is a safe but still complex procedure that requires special experience and expertise of the physicians and biomedical engineers. Thus, there is a need of special trainings to become familiar with the different equipment and to explain several effects that can be observed during clinical routine.
Methods: The Offenburg University of Applied Sciences offers a biomedical engineering study path specialized in the fields of cardiology, electrophysiology and cardiac electronic implants. It`s Peter Osypka Institute for Pacing and Ablation provides teaching following the slogan “Learning by watching, touching and adjusting”. It conducts lots of trainings for students as well as young physicians interested in electrophysiology and radiofrequency ablation.
Results: In-vitro trainings will be provided using the Osypka HAT 200 and HAT300s, Stockert EPshuttle and SmartAblate system as well as the Boston EPT-1000XP and Maestro 3000 and the Radionics RFG-3E cardiac radio frequency ablation generators. All of them require different handling as well as special accessories like catheter connection cables or boxes and back plates. The participants will be trained in the setup of temperature, power and cut-off impedance dependent on different ablation catheters. Furthermore troubleshooting in hard- and software is part of the program. Performing procedures in pork or animal protein and using physiological saline solution to simulate the blood flow, they can study the influence of contact force and impedance on lesion geometry etc. and to avoid adverse effects like “plops”. Lots of catheter types are available: 4mm tip, 8mm standard and gold tip, open and closed irrigated tip ablation catheters of different companies. The experiments will be completed by measuring the lesion size dependent on the used catheter type and ablation settings.
Conclusion: In-vitro training in radiofrequency ablation is a challenge for biomedical engineering students and young physicians.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
In-vivo and in-vitro comparison of implant-based CRT optimization - What provide new algorithms?
(2011)
Introduction: In cardiac resynchronization therapy (CRT), individual AV delay (AVD) optimization can effectively increase hemodynamics and reduce non-responder rate. Accurate, automatic and easily comprehensible algorithms for the follow-up are desirable. QuickOpt is the first attempt of a semi-automatic intracardiac electrogram (IEGM) based AVD algorithm. We aimed to compare its accuracy and usefulness by in-vitro and in-vivo studies.
Methods: Using the programmable ARSI-4 four-chamber heart rhythm and IEGM simulator (HKP, Germany), the QuickOpt feature of an Epic HF system (St. Jude, USA) was tested in-vitro by simulated atrial IEGM amplitudes between 0.3 and 3.5mV during both, manual and automatic atrial sensing between 0.2 and 1.0mV. Subsequently, in 21 heart failure patients with implanted biventricular defibrillators, QuickOpt was performed in-vivo. Results of the algorithm for VDD and DDD stimulation were compared with echo AV delay optimization.
Results: In-vitro simulations demonstrated a QuickOpt measuring accuracy of ± 8ms. Depending on atrial IEGM amplitude, the algorithm proposed optimal AVD between 90 and 150ms for VDD and between 140 and 200ms for DDD operation, respectively. In-vivo, QuickOpt difference between individual AVD in DDD and VDD mode was either 50ms (20pts) or 40ms (1pt). QuickOpt and echo AVD differed by 41 ± 25ms (7 – 90ms) in VDD and by 18 ± 24ms (17-50ms) in DDD operation. Individual echo AVD difference between both modes was 73 ± 20ms (30-100ms).
Conclusion: The study demonstrates the value of in-vitro studies. It predicted QuickOpt deficiencies regarding IEGM amplitude dependent AVD proposals constrained to fixed individual differences between DDD and VDD mode. Consequently, in-vivo, the algorithm provided AVD of predominantly longer duration than echo in both modes. Accepting echo individualization as gold standard, QuickOpt should not be used alone to optimize AVD in CRT patients.
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Message co chairmen
(2017)
Energy and environment continue to be major issues of human mankind. This holds true on the regional, the national, and the global level. And it is one of the problems, where engineers and scientists in conjunction with political will and people's awareness, can find new approaches and solutions to save the natural resources and to make their use more efficient.
The paper proposes a system architecture for charging infrastructure that serves the requirements of future fleets of shared-use electric vehicles in urban scenarios. The focus of the development is on the interfaces to central stakeholders such as mobility service providers, distribution network operators and utilities. The main concept of the proposed system is the adherence to a stringent resource-oriented design approach, following the design principles of the Representational State Transfer (REST) architectural software style for distributed systems. This design approach is used from the cloud-based services down to the implementation of the charging infrastructure's control algorithms. Focusing on the resources of the various entities simplifies the implementation of their interactions, compared to the explicit declaration of services that are available. The system design ensures that the charging infrastructure is open to all users and generates a benefit beyond basic charging operations. Integration in emerging smart markets is done via open web-based interfaces. These allow for the generation of an added value of concrete services for shared-use electric mobility. A link to the field of grid operation is proposed using the ISO/IEC 61850 telecontrol standard. The smart meter capabilities of the charging stations can be used to gain additional information on the current state of the distribution grid. As an exemplary service a load management service for a fleet of shared-use electric vehicles is going to be implemented.
Multi-phase management is crucial for performance and durability of electrochemical cells such as batteries and fuel cells. In this paper we present a generic framework for describing the two-dimensional spatiotemporal evolution of gaseous, liquid and solid phases, as well as their interdependence with interfacial (electro-)chemistry and microstructure in a continuum description. The modeling domain consists of up to seven layers (current collectors, channels, electrodes, separator/membrane), each of which can consist of an arbitrary number of bulk phases (gas, liquid, solid) and connecting interfaces (two-phase or multi-phase boundaries). Bulk and interfacial chemistry is described using global or elementary kinetic reactions. Multi-phase management is coupled to chemistry and to mass and charge transport within bulk phases. The functionality and flexibility of this framework is demonstrated using four application areas in the context of post-lithium-ion batteries and fuel cells, that is, lithium-sulfur (Li-S) cells, lithium-oxygen (Li-O) cells, solid oxide fuel cells (SOFC) and polymer electrolyte membrane fuel cells (PEFC). The results are compared to models available in literature and properties of the generic framework are discussed.
A theoretical description is given for the propagation of surface acoustic wave pulses in anisotropic elastic media subject to the influence of nonlinearity. On the basis of nonlinear elasticity theory, an evolution equation is presented for the surface slope or the longitudinal surface velocity associated with an acoustic pulse. It contains a non-local nonlinearity, characterized by a kernel that strongly varies from one propagation geometry to another due to the anisotropy of the substrate. It governs pulse shape evolution in homogeneous halfspaces and the shapes of solitary surface pulses that exist in coated substrates. The theory describing nonlinear Rayleigh-type surface acoustic waves is extended in a straightforward way to surface waves that are localized at a one-dimensional acoustic waveguide like elastic wedges.
The Division Industrial Chemistry of the Swiss Chemical Society organizes periodically a two-day event for the post-graduate education of its members. This event is known as the Freiburger Symposium. This year it focussed on sustainable chemical production. The twelve talks covered the following aspects: ethical needs for sustainability standards, the required, attained, and yet to be attained sustainability goals in chemical industry. Diverse case studies showed the highly developed awareness about the sustainability issue within the chemical community.
The importance of obtaining simultaneous particle size and concentration values has grown up with continuing discussion of the health effects, of internal combustion engine generated particulate emissions and in particular of Diesel soot emissions. In the present work an aerosol measurement system is described that delivers information about particle size and concentration directly from the undiluted exhaust gas.
Using three laser diodes of different wavelengths which form one parallel light beam, each spectral attenuation is analysed by a single detector and the particle diameter and concentration is evaluated by the use of the Mie theory and shown on-line at a frequency of 1 Hz. The system includes an optical long-path-cell (White principle) with an adjustable path length from 2.5 to 15 m, which allows the analysis within a broad concentration range.
On-line measurements of the particulate emissions in the hot, undiluted exhaust of Diesel engines are presented under stationary and transient engine’s load conditions. Mean particle diameters well below 100 nm are detected for modern Diesel engines. The measured particle concentration corresponds excellently with the traditional gravimetrical measurements of the diluted exhaust. Additionally, measurements of particle emissions (mostly condensed hydricarbons) from a two-stroke engine are presented and discussed.
A simple measuring method for acquiring the radiation pattern of an ultrawide band Vivaldi antenna is presented. The measuring is performed by combining two identical Vivaldi antennas and some of the intrinsic properties of a stepped-frequency continue wave radar (SFCW radar) in the
range from 1.0 GHz to 6.0 GHz. A stepper-motor provided the azimuthal rotation for one of the antennas from 0 ◦ to 360 ◦. The tests have been performed within the conventional environment (laboratory / office) without using an anechoic chamber or absorbing materials. Special measuring devices have not been used either. This method has been tested with different pairs of Vivaldi antennas and it can be also used for different ones (with little or no change in the system), as long as their operational
bandwidth is within the frequency range of the SFCW radar.
Keywords — SFCW Radar, Antenna Gain Characterization,
Azimuthal Radiation Pattern
In this paper, we establish a simple model for the exchange of messages in a vehicular network and we consider fundamental limits on the achievable data rate. For a vehicular network, the exchange of data with other nearby vehicles is particularly important for traffic safety, e.g. for collision avoidance, but also for cooperative applications like platooning. These use cases are currently addressed by standards building on IEEE 802.11p, namely ITS-G5 and DSRC (dedicated short range communication), which encounter saturation problems at high vehicle densities. For this reason, we take a step back and ask for the fundamental limits for the common data rate in a vehicular network. After defining a simple single-lane model and the corresponding capacity limits for some basic multiple- access schemes, we present results for a more realistic setting. For both scenarios, non-orthogonal multiple-access (NOMA) yields the best results.
This paper evaluates the implementation of Medium Access Control (MAC) protocols suitable for massive access connectivity in 5G multi-service networks. The access protocol extends multi-packet detection receivers based on Physical Layer Network Coding (PLNC) decoding and Coded Random Access protocols considering practical aspects to implement one-stage MAC protocols for short packet communications in mMTC services. Extensions to enhance data delivery phase in two- stage protocols are also proposed. The assessment of the access protocols is extended under system level simulations where a suitable link to system interface characterization has been taken into account.
Der Entwurf und die Realisierung gedruckter Schaltungen oder Elektronikkomponenten stellt ein intensives Thema der Forschung dar. Forschungsgruppen beschäftigen sich zunehmend mit der Entwicklung von gedruckten Energy Harvestern, weil diese kostengünstig und einfach herstellbar sind. Das Energy Harvesting (EH) oder auch das ”Mikro Energy Harvesting“ (MEH) bezeichnet die Gewinnung von elektrischer Energie aus der Umgebung, um elektronische Verbraucher zu versorgen, kontinuierliche Leistungen zu erzeugen, das System energieeffizienter zu machen, sowie die Energiespeicherung im Mikrowattbereich zu gewährleisten. Energy Harvesting-Systeme stellen eine Alternative gegenüber der Energieversorgung autarker Low-Power-Elektronik mit Batterien dar. Das Energiemanagement solcher EH-Systeme ist jedoch eine Herausforderung aufgrund der Energieverfügbarkeit und der im Zeitablauf nicht konstanten Verlustleistung. Dieser Beitrag gibt einen Überblick über die derzeit existierenden ultra low-power Energiemanagement Schaltungen für Energy Harvester. Dabei wird insbesondere der Fokus auf gedruckte Energy Harvester gelegt. Es soll aufgezeigt werden, welche Aspekte der vorgestellten Energieversorgungsschaltungen bei der Entwicklung eines Energieversorgungschips für gedruckte Energy Harvester berüucksichtigt werden sollen.
Implementierung von Softcore-Prozessoren und/oder weiteren IPs (Intellectual Property) in FPGAs
(2018)
Die zunehmende Integration von kompletten Systemen auf einem Chip (System-on-Chip, SoC) erfordert auch immer die Integration einer Recheneinheit bzw. eines Prozessorkerns. Möchte man insbesondere Low-Power-SoC-Systeme entwickeln, z.B. drahtlose Sensor-SoC-Systeme für Anwendungen im Rahmen von Industrie 4.0, ist die Implementierung eines solchen Prozessorkerns mit hohen Herausforderungen verbunden. Prinzipiell können hierfür verschiedene Ansätze verfolgt werden, nämlich die Implementierung einer Hardcore Prozessor-IP (IP = Intellectual Property) oder einer Softcore-Prozessor-IP. Im vorliegenden Beitrag wird zunächst auf den derzeitigen Stand der Technik verfügbarer Hardcore- oder Softcore-Prozessoren unter den Randbedingungen der Low-Power-Anforderungen und der weiten Verbreitung des Cores in industriellen Anwendungen eingegangen. Schließlich werden die Ergebnisse der Implementierung und Evaluierung eines derzeit frei verfügbaren 16-bit MSP430-kompatiblen Softcore Prozessors auf einem Altera-Cyclon-FPGA vorgestellt. Aus den Ergebnissen wird ein entsprechendes Fazit für die Implementierung von Low-Power-SoC-Systeme gegeben.
Optische Navigationssysteme weisen bisher eine eindeutige Trennung zwischen nachverfolgendem Gerät (Tool Tracker) und nachverfolgten Geräten (Tracked Tools) auf. In dieser Arbeit wird ein neues Konzept vorgestellt, dass diese Trennung aufhebt: Jedes Tracked Tool ist gleichzeitig auch Tool Tracker und besteht aus Marker-LEDs sowie mindestens einer Kamera, mit deren Hilfe andere Tracker in Lage und Orientierung nachverfolgt werden können. Bei Verwendung von nur einer Kamera geschieht dies mittels Pose Estimation, ab zwei Kameras werden die Marker-LEDs trianguliert. Diese Arbeit beinhaltet die Vorstellung des neuen Peer-To-Peer-Tracking-Konzepts, einen sehr schnellen Pose-Estimation-Algorithmus für beliebig viele Marker sowie die Klärung der Frage, ob die mit Pose Estimation erreichbare Genauigkeit vergleichbar mit der eines Stereo-Kamera-Systems ist und den Anforderungen an die chirurgische Navigation gerecht wird.
The CAN bus still is an important fieldbus in various domains, e.g. for in-car communication or automation applications. To counter security threats and concerns in such scenarios we design, implement, and evaluate the use of an end-to-end security concept based on the Transport Layer Security protocol. It is used to establish authenticated, integrity-checked, and confidential communication channels between field devices connected via CAN. Our performance measurements show that it is possible to use TLS at least for non time-critical applications, as well as for generic embedded networks.
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).
Vehicle-to-Everything (V2X) communication promises improvements in road safety and efficiency by enabling low-latency and reliable communication services for vehicles. Besides using Mobile Broadband (MBB), there is a need to develop Ultra Reliable Low Latency Communications (URLLC) applications with cellular networks especially when safety-related driving applications are concerned. Future cellular networks are expected to support novel latencysensitive use cases. Many applications of V2X communication, like collaborative autonomous driving requires very low latency and high reliability in order to support real-time communication between vehicles and other network elements. In this paper, we classify V2X use-cases and their requirements in order to identify cellular network technologies able to support them. The bottleneck problem of the medium access in 4G Long Term Evolution(LTE) networks is random access procedure. It is evaluated through simulations to further detail the future limitations and requirements. Limitations and improvement possibilities for next generation of cellular networks are finally detailed. Moreover, the results presented in this paper provide the limits of different parameter sets with regard to the requirements of V2X-based applications. In doing this, a starting point to migrate to Narrowband IoT (NB-IoT) or 5G - solutions is given.
The next generation cellular networks are expected to improve reliability, energy efficiency, data rate, capacity and latency. Originally, Machine Type Communication (MTC) was designed for low-bandwidth high-latency applications such as, environmental sensing, smart dustbin, etc., but there is additional demand around applications with low latency requirements, like industrial automation, driver-less cars, and so on. Improvements are required in 4G Long Term Evolution (LTE) networks towards the development of next generation cellular networks for providing very low latency and high reliability. To this end, we present an in-depth analysis of parameters that contribute to the latency in 4G networks along with a description of latency reduction techniques. We implement and validate these latency reduction techniques in the open-source network simulator (NS3) for narrowband user equipment category Cat-Ml (LTE-M) to analyze the improvements. The results presented are a step towards enabling narrowband Ultra Reliable Low Latency Communication (URLLC) networks.
The excessive control signaling in Long Term Evolution networks required for dynamic scheduling impedes the deployment of ultra-reliable low latency applications. Semi-persistent scheduling was originally designed for constant bit-rate voice applications, however, very low control overhead makes it a potential latency reduction technique in Long Term Evolution. In this paper, we investigate resource scheduling in narrowband fourth generation Long Term Evolution networks through Network Simulator (NS3) simulations. The current release of NS3 does not include a semi-persistent scheduler for Long Term Evolution module. Therefore, we developed the semi-persistent scheduling feature in NS3 to evaluate and compare the performance in terms of uplink latency. We evaluate dynamic scheduling and semi-persistent scheduling in order to analyze the impact of resource scheduling methods on up-link latency.
The Datagram Transport Layer Security (DTLS) protocol has been designed to provide end-to-end security over unreliable communication links. Where its connection establishment is concerned, DTLS copes with potential loss of protocol messages by implementing its own loss detection and retransmission scheme. However, the default scheme turns out to be suboptimal for links with high transmission error rates and low data rates, such as wireless links in electromagnetically harsh industrial environments. Therefore, in this paper, as a first step we provide an analysis of the standard DTLS handshake's performance under such adverse transmission conditions. Our studies are based on simulations that model message loss as the result of bit transmission errors. We consider several handshake variants, including endpoint authentication via pre-shared keys or certificates. As a second step, we propose and evaluate modifications to the way message loss is dealt with during the handshake, making DTLS deployable in situations which are prohibitive for default DTLS.
The Transport Layer Security (TLS) protocol is a cornerstone of secure network communication, not only for online banking, e-commerce, and social media, but also for industrial communication and cyber-physical systems. Unfortunately, implementing TLS correctly is very challenging, as becomes evident by considering the high frequency of bugfixes filed for many TLS implementations. Given the high significance of TLS, advancing the quality of implementations is a sustained pursuit. We strive to support these efforts by presenting a novel, response-distribution guided fuzzing algorithm for differential testing of black-box TLS implementations. Our algorithm generates highly diverse and mostly-valid TLS stimulation messages, which evoke more behavioral discrepancies in TLS server implementations than other algorithms. We evaluate our algorithm using 37 different TLS implementations and discuss―by means of a case study―how the resulting data allows to assess and improve not only implementations of TLS but also to identify underspecified corner cases. We introduce suspiciousness as a per-implementation metric of anomalous implementation behavior and find that more recent or bug-fixed implementations tend to have a lower suspiciousness score. Our contribution is complementary to existing tools and approaches in the area, and can help reveal implementation flaws and avoid regression. While being presented for TLS, we expect our algorithm's guidance scheme to be applicable and useful also in other contexts. Source code and data is made available for fellow researchers in order to stimulate discussions and invite others to benefit from and advance our work.
The paper describes the methodology and experimental results for revealing similarities in thermal dependencies of biases of accelerometers and gyroscopes from 250 inertial MEMS chips (MPU-9250). Temperature profiles were measured on an experimental setup with a Peltier element for temperature control. Classification of temperature curves was carried out with machine learning approach.
A perfect sensor should not have thermal dependency at all. Thus, only sensors inside the clusters with smaller dependency (smaller total temperature slopes) might be pre-selected for production of high accuracy inertial navigation modules. It was found that no unified thermal profile (“family” curve) exists for all sensors in a production batch. However, obviously, sensors might be grouped according to their parameters. Therefore, the temperature compensation profiles might be regressed for each group. 12 slope coefficients on 5 degrees temperature intervals from 0°C to +60°C were used as the features for the k-means++ clustering algorithm.
The minimum number of clusters for all sensors to be well separated from each other by bias thermal profiles in our case is 6. It was found by applying the elbow method. For each cluster a regression curve can be obtained.
Recently, the demand for scalable, efficient and accurate Indoor Positioning Systems (IPS) has seen a rising trend due to their utility in providing Location Based Services (LBS). Visible Light Communication (VLC) based IPS designs, VLC-IPS, leverage Light Emitting Diodes (LEDs) in indoor environments for localization. Among VLC-based designs, Time Difference of Arrival (TDOA) based techniques are shown to provide very low errors in the relative position of receivers. Our considered system consists of five LEDs that act as transmitters and a single receiver (photodiode or image sensor in smart phone) whose position coordinates in an indoor environment are to be determined. As a performance criterion, Cramer Rao Lower Bound (CRLB) is derived for range estimations and the impact of various factors, such as, LED transmission frequency, position of reference LED light, and the number of LED lights, on localization accuracy has been studied. Simulation results show that depending on the optimal values of these factors, location estimation on the order of few centimeters can be realistically achieved.
Real-Time Ethernet has become the major communication technology for modern automation and industrial control systems. On the one hand, this trend increases the need for an automation-friendly security solution, as such networks can no longer be considered sufficiently isolated. On the other hand, it shows that, despite diverging requirements, the domain of Operational Technology (OT) can derive advantage from high-volume technology of the Information Technology (IT) domain. Based on these two sides of the same coin, we study the challenges and prospects of approaches to communication security in real-time Ethernet automation systems. In order to capitalize the expertise aggregated in decades of research and development, we put a special focus on the reuse of well-established security technology from the IT domain. We argue that enhancing such technology to become automation-friendly is likely to result in more robust and secure designs than greenfield designs. Because of its widespread deployment and the (to this date) nonexistence of a consistent security architecture, we use PROFINET as a showcase of our considerations. Security requirements for this technology are defined and different well-known solutions are examined according their suitability for PROFINET. Based on these findings, we elaborate the necessary adaptions for the deployment on PROFINET.
Solar irradiance prediction is vital for the power management and the cost reduction when integrating solar energy. The study is towards a ground image based solar irradiance prediction which is highly dependent on the cloud coverage. The sky images are collected by using ground based sky imager (fisheye lens). In this work, different algorithms for cloud detection being a preparation step for their segmentation are compared.
The fisheye camera has been widely studied in the field of ground based sky imagery and robot vision since it can capture a wide view of the scene at one time. However, serious image distortion is a major drawback hindering its wider use. To remedy this, this paperproposes a lens calibration and distortion correction method for detecting clouds and forecasting solar radiation. Finally, the radial distortion of the fisheye image can be corrected by incorporating the estimated calibration parameters. Experimental results validate the effectiveness of the proposed method.
This paper deals with the detection and segmentation of clouds on high-dynamic-range (HDR) images of the sky as well as the calculation of the position of the sun at any time of the year. In order to predict the movement of clouds and the radiation of the sun for a short period of time, the clouds thickness and position have to be known as precisely as possible. Consequently, the segmentation algorithm has to provide satisfactory results regardless of different weather, illumination and climatic conditions. The principle of the segmentation is based on the classification of each pixel as a cloud or as a sky. This classification is usually based on threshold methods, since these are relatively fast to implement and show a low computational burden. In order to predict if and when the sun will be covered by clouds, the position of the sun on the images has to be determined. For this purpose, the zenith and azimuth angles of the sun are determined and converted into XY coordinates.
In public transportation, the motor pool often consists of various different vehicles bought over a duration of many years. Sometimes, they even differ within one batch bought at the same time. This poses a considerable challenge in the storage and allocation of spare parts, especially in the event of damage to a vehicle. Correctly assigning these parts before the vehicle reaches the workshop could significantly reduce both the downtime and, therefore, the actual costs for companies. In order to achieve this, the current software uses a simple probability calculation. To improve the performance, the data of specific companies was analysed, preprocessed and used with several modelling techniques to classify and, therefore, predict the spare parts to be used in the event of a faulty vehicle. We summarize our experience running through the steps of the Cross Industry Standard Process for Data Mining and compare the performance to the previously used probability. Gradient Boosting Trees turned out to be the best modeling technique for this special case.
This paper describes the use of the single-linkage
hierarchical clustering method in outlier detection for
manufactured metal work pieces. The main goal of the study is
to group defects that occur 5 mm into a work piece from the
edge, i.e., the border of the metal work piece. The goal is to
remove defects outside the area of interest as outliers.
According to the assumptions made for the performance
criteria, the single-linkage method has achieved better results
compared to other agglomeration methods.
Targeting complex fractionated atrial electrocardiograms by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies and catheter ablation of atrial fibrillation and ventricular tachycardia. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardigraphy allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm use automatic ECG trigger function for signal averaged transthoracic, transesophageal and intra-cardiac ECG signals with novel LabVIEW software.
Results: The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. We evaluated atrial flutter in the time domain with two-to-one atrioventricular conduction, 212.0 ± 4.1 ms atrial cycle length, 426.0 ± 8.2 ms ventricular cycle length, 58.2 ± 1.8 ms P-wave duration, 119.6 ± 6.4 ms PQ duration, 103.0 ± 2.4 ms QRS duration and 296.4 ± 6.8 ms QT duration. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can be utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial and ventricular electrocardiograms may be useful parameters to evaluate electrical cardiac bradycardia and tachycardia signals in atrial fibrillation and ventricular tachycardia ablation.
Cardiac resynchronization therapy (CRT) with hemodynamic
optimized biventricular pacing is an established
therapy for heart failure patients with sinus rhythm,
reduced left ventricular ejection fraction and wide QRS
complex. The aim of the study was to evaluate electrical
right and left cardiac atrioventricular delay and left atrial
delay in CRT responder and non-responder with sinus
rhythm. Methods: Heart failure patients with New York
Heart Association class 3.0 ± 0.3, sinus rhythm and
27.7 ± 6.1% left ventricular ejection fraction were measured
by surface ECG and transesophageal bipolar left
atrial and left ventricular ECG before implantation of
CRT devices. Electrical right cardiac atrioventricular
delay was measured between onset of P wave and onset
of QRS complex in the surface ECG, left cardiac
atrioventricular delay between onset of left atrial signal
and onset of left ventricular signal in the transesophageal
ECG and left atrial delay between onset and offset of left
atrial signal in the transesophageal ECG. Results: Electrical
atrioventricular and left atrial delay were
196.9 ± 38.7 ms right and 194.5 ± 44.9 ms left cardiac
atrioventricular delay, and 47.7 ± 13.9 ms left atrial
delay. There were positive correlation between right and
left cardiac atrioventricular delay (r = 0.803 P < 0.001)
and negative correlation between left atrial delay and left
ventricular ejection fraction (r = −0.694 P = 0.026) with
67% CRT responder. Conclusions: Transesophageal
electrical left cardiac atrioventricular delay and left atrial
delay may be useful preoperative atrial desynchronization
parameters to improve CRT optimization.
Hintergrund: Richtung und Stärke des elektrischen Feldes (E-Feld) der biventrikulären (BV) Stimulation und elektrische interventrikuläre Desynchronisation sind bei Patienten mit Herzinsuffizienz und verbreitertem QRS Komplex von Bedeutung für den Erfolg der kardialen Resynchronisationstherapie (CRT). Das 3D Herzrhythmusmodell (HRM) ermöglicht die
Simulation von CRT und Hochfrequenz (HF) Ablation. Das Ziel der Studie besteht in der Integration von Schrittmacher- und Ablationselektroden in das HRM zur E-Feld Simulation der BV Stimulation und thermischen Feld (T-Feld) Simulation der HF Ablation von Vorhofflimmern (AF).
Methoden: Es wurden fünf multipolare linksventrikuläre (LV) Elektroden, eine epikardiale LV Elektrode, vier bipolare rechtsatriale (RA) Elektroden, zwei rechtsventrikuläre (RV) Elektroden und ein HF Ablationskatheter mit CST (Computer Simulation Technology, Darmstadt) modelliert und das HRM (Schalk et al: Clin Res Cardiol 106, Suppl 1, April 2017, P1812) um den Koronarvenensinus (CS) erweitert (HRM-CS). E-Feld Simulationen bei vorhofsynchroner BV Stimulation und bei RA Stimulation mit RV und LV Ableitung erfolgten mit den Elektroden Select Secure 3830, Capsure VDD-2 5038 und Attain OTW 4194 im HRM+CS (Fig.). F-Feld Simulationen der HF Ablation von AF bei CRT wurden mit integriertem Ablationskatheter AlCath G FullCircle (Biotronik) simuliert.
Ergebnisse: HRM-CS ermöglichte 3D E-Feld Simulationen bei vorhofsynchroner bipolarer BV Stimulation und bei bipolarer RA Stimulation mit bipolarer RV und LV Ableitung. RV und LV Stimulation erfolgten zeitgleich bei einer Amplitude von 3 V an der LV Elektrode und 1 V an der RV Elektrode mit einer Impulsbreite von jeweils 0,5 ms. Die von der BV Stimulationen erzeugten Fernpotentiale konnten von der RA Elektrode wahrgenommen werden. Das Fernpotential an der RA Elektrodenspitze betrug 32,86 mV und in 1 mm Abstand von der RA Elektrodenspitze ergab sich ein Fernpotential von 185,97 mV. HRM-CS ermöglichte 3D T-Feld Simulationen der HF Ablation von AF bei CRT. Das T-Feld bei HF Ablation des AV-Knotens wurde mit einer anliegenden Leistung von 5 W bei 420 kHz an der distalen 8 mm Ablationselektrode simuliert. Die Temperatur an der Katheterspitze betrug nach 5 s Ablationsdauer 88,66 °C, in 1 mm Abstand von der Katheterspitze im Myokard 42,17 °C und in 2 mm Abstand 37,49 °C.
Schlussfolgerungen: HRM-CS und Elektrodenmodelle ermöglichen die 3D Simulationen von E-Feldern bei vorhofsynchroner BV Stimulation, RA Stimulation mit RV und LV Wahrnehmung und von T-Feldern bei HF Ablation. E-Feld Simulationen von RA, RV und LV Stimulation und Sensing können möglicherweise zur Vorhersage von CRT Respondern genutzt werden.
In einer Vorlesung nicht abgehängt zu werden und die vielen Ergebnisse strukturiert zu sichern, ist für Studienanfänger eine große Herausforderung. Mitschriebe sind sehr oft unvollständig, unstrukturiert oder „zerfläddert“. Mitschreib-Marathon und Mitdenken schließen sich bei vielen aus. Auch aktivierende Lehrmethoden, Medienwechsel, Lehrvideos führen oft dazu, dass eine strukturierte Sicherung der Inhalte des Lehrgesprächs noch erschwert wird.
Es wird ein Best Practice Beispiel gezeigt, Mathematik-Vorlesungen über ein Tablet-basiertes Mitmach-Skript zu gestalten. Dieses dient als Schrittmacher zwischen Input- und Verarbeitungsphasen und unterstützt die strukturierte Verschriftlichung, indem es Vorteile von Tafel, PPT und klassischem Skript vereint. Traditionelle Methoden werden mit technologischen Möglichkeiten kombiniert, um die angesprochenen Herausforderungen bewusster im Lehrstil zu berücksichtigen. Verbindungen zu Virtual Classroom und Video-gestützter Lehre werden aufgezeigt.
Wireless sensor networks have recently found their way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researchers. Such monitoring applications, in general, don way into a wide range of applications among which environmental monitoring system has attracted increasing interests of researc latency requirements regarding to the energy efficiency. Also a challenge of this application is the network topology as the application should be able to be deployed in very large scale. Nevertheless low power consumption of the devices making up the network must be on focus in order to maximize the lifetime of the whole system. These devices are usually battery-powered and spend most of their energy budget on radio transceiver module. A so-called Wake-On-Radio (WoR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, some designs for integration of WOR into IEEE 802.1.5.4 are to be discussed, providing an overview of trade-offs in energy consumption while deploying the WoR schemes in a monitoring system.
Environmental Monitoring is an attractive application field for Wireless Sensor Network (WSN). Water Level Monitoring helps to increase the efficiency of water distribution and management. In Pakistan, the world’s largest irrigation system covers 90.000 km of channels which needs to be monitored and managed on different levels. Especially the sensor systems for the small distribution channels need to be low energy and low cost. The distribution presents a technical solution for a communication system which is developed in a research project being co-funded by German Academic Exchange Service (DAAD). The communication module is based on IEEE-802.15.4 transceivers which are enhanced through Wake-On-Radio (WOR) to combine low-energy and real-time behavior. On higher layers, IPv6 (6LoWPAN) and corresponding routing protocols like Routing Protocol for Low power and Lossy Networks (RPL) can extend range of the network. The data are stored in a database and can be viewed online via a web interface. Of course, also automatic data analysis can be performed.
We report the use of the Raman spectral information of the chemical compound toluene C7H8 as a reference on the analysis of laboratory-prepared and commercially acquired gasoline-ethanol blends. The rate behavior of the characteristic Raman lines of toluene and gasoline has enabled the approximated quantification of this additive in commercial gasoline-ethanol mixtures. This rate behavior has been obtained from the Raman spectra of gasoline-ethanol blends with different proportions of toluene.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
The application of leaky feeder (radiating) cables is a common solution for the implementation of reliable radio communication in huge industrial buildings, tunnels and mining environment. This paper explores the possibilities of leaky feeders for 1D and 2D localization in wireless systems based on time of flight chirp spread spectrum technologies. The main focus of this paper is to present and analyse the results of time of flight and received signal strength measurements with leaky feeders in indoor and outdoor conditions. The authors carried out experiments to compare ranging accuracy and radio coverage area for a point-like monopole antenna and for a leaky feeder acting as a distributed antenna. In all experiments RealTrac equipment based on nanoLOC radio standard was used. The estimation of the most probable path of a chirp signal going through a leaky feeder was calculated using the ray tracing approach. The typical non-line-of-sight errors profiles are presented. The results show the possibility to use radiating cables in real time location technologies based on time-of-flight method.
Die zunehmende Anzahl von Transistoren mit immer kleineren Strukturgrößen führt zu einer zunehmenden Leistungsaufnahme in modernen Prozessoren. Das gilt insbesondere für High-End Prozessoren, die mit einer hohen Taktfrequenz betrieben werden. Die aufgenommene Leistung wird in Wärme umgewandelt, die in einer Temperaturerhöhung der Prozessoren resultiert. Hohe Betriebstemperaturen verursachen u.a. eine verringerte Rechenleistung, eine kürzere Lebensdauer des Prozessors und höhere Leckströme. Aus diesen Gründen wird aktives, dynamisches thermisches Management immer wichtiger. Dieser Beitrag stellt eine Erweiterung zu dem Standard- Linux-Scheduler in der Kernel-Version 3.0 für eingebettete Systeme vor: einen PID-Regler, der unter Angabe einer Solltemperatur eine dynamische Frequenz- und Spannungsskalierung durchführt. Die Experimente auf dem Freescale LMX6 Quadcore-Prozessor zeigen, dass der PID-Regler die Betriebstemperatur des Prozessors an die Solltemperatur regeln kann. Er ist die Grundlage für eine in Zukunft zu entwickelnde prädiktive Regelung.
Transcatheter aortiv valve implantation is a new safe strategy treatment for patients with symptomatic severe aortic stenosis and high operative risk. The aim of the study was to compare the pre-and post- muiscatheter aortiv valve implantation procedures to determine the atrioventricuktr conduction time as a potential predictor of permanent pacemaker therapy requirement after transcatheter aortiv valve implantation. The transcatheter aortiv valve implantation patients were divided into groups without pacemaker and with dual or single chamber pacemEtker with diffent atrioventrieular conduction time disturbance before and after transcatheter aortiv valve implantation. In heart failure, patients without permanent pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was prolonged after transcatheter aortiv valve implantation. In patients with permanent dual chamber pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was normalised with dual chaniber atrioventrieuku pacing mode. Atrioventricular conduction time may be a useful parameter to evaluate the risk of post-procedural atrioventricular conduction block and permanent pacemaker therapy in transcatheter north, valve implantation patients.
Die Geschäftsleitung und Führungskräfte von Eller Repro+Druck beschlossen im Juli 1994 die Teilnahme am damls noch neuen EU-Öko-Audit. Die Durchführung des Audits ist für 1996 geplant. Zwei Diplomanden der FH Offenburg wurde die Möglichkeit gegeben, als externe Berater für Eller Repro+Druck ihre Diplomarbeit über die Vorbereitung zum Öko-Audit zu schreiben. Der Betrieb (170 Mitarbeiter) verfügt über elektronische Bildverarbeitung auf Scitex- und Mac-Schiene, derzeit noch konventionelle Plattenkopie und -entwicklung, fünf Offsetrotationen sowie Weiterverarbeitung mit Sammelheftern und Falzmaschinen. Der Referent berichtet über die Erfahrungen, die sein Unternehmen bis zum Herbst 1995 mit der Vorbereitung zum Öko-Audit gemacht hat, und gibt Praxistips. Zusammen mit den Beratern wurden eine Aufnahme der betrieblichen Situation durchgeführt, Maßnahmen geplant und zum Teil durchgeführt.
An der Fachhochschule Offenburg wird der Design-Kit FHO_MTC_CMOS_035_v1.0 erstellt. Mit Hilfe dieses Kits lassen sich Designs in der AMI O.35 Mikrometer Technologie entwerfen. Alle durchgeführten Arbeiten werden durch den Entwurf eines Lottozahlengenerator-Chips verifiziert, der gefertigt wird. Damit sind alle wesentlichen Schritte bekannt, die für die Aufbereitung eines Design-Kits für beliebige Technologien für die Mentor-Tools erforderlich sind. Der Design-Kit wird für alle MPC-Mitglieder freigegen, die eine NDA für AMI bei Europractice unterzeichnet haben.
In dieser Arbeit wurde eine USB-Schnittstelle für ein bestehendes Mikrocontroller System FHOP realisiert. Im aktuellen Stand funktioniert das Design zuverlässig in Low Speed Konfiguration. Im Full Speed gibt es noch einige Schwierigkeiten, denn die Kommunikation bricht nach einigen Paket-Transfers zusammen. Durch das Emulieren des Designs auf FPGA wurde die Funktion nachgewiesen. Die nächste Aufgabe wird sein, die Hardware zu optimieren, damit das USB-Modul auch im Full Speed zuverlässig funktioniert. Zusätzlich wird die Software auf der PC Seite optimiert, um höhere Übertragungsraten zu erzielen.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
Non-fluoroscopic Imaging with MRT/CT Image Integration Catheter Positioning with Double Precision
(2014)
Introduction: When antiarrhythmic drug therapy has failed, different approaches of pulmonary vein isolation are considered a reasonable option in the treatment of atrial fibrillation. It will be performed predominantly by radiofrequency catheter ablation. As the individual anatomy of left atrium and the pulmonary veins differs considerably, accurate visualization of these structures is essential during catheter positioning. Using non-fluoroscopic electroanatomic mapping system with image integration, electroanatomic mapping can be combined with highly detailed anatomical MRT or CT information on complex left atrial structures. This may facilitate catheter navigation during ablation for atrial fibrillation.
Methods: The CARTO XP electroanatomic system was used in a project during biomedical engineering study to practice image integration of anonymized real patients that underwent pulmonary vein isolation by CARTO XP and a MRT/CT procedure. Using the image integration software, MRT or CT images were imported into the CARTO XP system. The next process was segmentation of the acquired images. It involves dividing the images into different regions in order to select the structures of interest. In clinical routine, this segmentation has to be performed before catheter ablation. Then, the segmented images were aligned with the reconstructed electroanatomic maps. This consists of several steps, including selection of the left atrium, scaling of the reconstructed geometry, fusion of the structures using landmarks, and optimization of the integration by adjusting the reconstructed geometry of the left atrium.
Results: In the 3 months lasting period of the project, image integration was trained in 13 patients undergoing catheter ablation for atrial fibrillation. Within this period, time consumption for the process decreased from about 90 minutes at the beginning to about 35 minutes at the end for one patient.
Conclusion: Image integration into non-fluoroscopic electroanatomic map is a sophisticated tool in cardiac radiofrequency catheter ablation. Intensive training is necessary to control the procedure.
A Localization System Using Inertial Measurement Units from Wireless Commercial Handheld Devices
(2013)
A highly scalable IEEE802.11p communication and localization subsystem for autonomous urban driving
(2013)
Transösophageales interventrikuläres Delay bei Vorhofflimmern und kardialer Resynchronisation
(2013)
Die transösophageale linksventrikuläre Elektrokardiographie ermöglicht die Evaluierung der elektrischen ventrikulären Desynchronisation im Rahmen der kardialen Resynchronisationstherapie der Herzinsuffizienz. Das Ziel der Untersuchung besteht in der präoperativen Abschätzung des transösophagealen interventrikulären Delays bei Vorhofflimmern und kardialer Resynchronisationstherapie. Bei Patienten mit Vorhofflimmern, Herzinsuffizienz New York Heart Association Klasse 3,0 ± 0,2 und QRS-Dauer 159,6 ± 23,9 ms wurde das fokusierte transösophageale linksventrikuläre EKG abgeleitet. Die kardiale Resynchronisationstherapie Responder QRS-Dauer korrelierte mit dem transösophagealen interventrikulären Delay bei Vorhofflimmern.
Cardiac resynchronization therapy is an established therapy for heart failure patients with sinus rhythm, reduced left ventricular ejection fraction and prolongation of QRS duration. The aim of the study was to evaluate ventricular desynchronization with electrical interventricular delay (IVD) to left ventricular delay (LVD) ratio in atrial fibrillation heart failure patients. IVD and LVD were measured by transesophageal posterior left ventricular ECG recording. In atrial fibrillation heart failure patients with prolonged QRS duration, the mean IVD-to-LVD-ratio was 0.84 +/- 0.42 with a range from 0.17 to 2.2 IVD-to-LVD-ratio. IVD-to-LVD-ratio correlated with QRS duration. IVD-to-LVD-ratio may be a useful parameter to evaluate electrical ventricular desynchronization in atrial fibrillation heart failure patients.
Cardiac resynchronization therapy with atrioventricular and interventricular pacing delay optimized biventricular pacing is an established therapy for heart failure patients with sinus rhythm and reduced left ventricular ejection fraction. The aim of the study was to evaluate atrioventricular and interventricular pacing delay optimization in cardiac resynchroniza-tion therapy by transthoracic impedance cardiography in biventricular pacing with different left ventricular electrode po-sition. In biventricular pacing heart failure patients with lateral, posterolateral and anterolateral left ventricular electrode position, the mean optimal atrioventricular sening delay was 108.6 ± 20.3 ms and the mean optimal interventricular pac-ing delay -12.3 ± 25.9 ms. Transthoracic impedance cardiography may be a useful technique to optimize atrioventricular and interventricular pacing delay in biventricular pacing with different left ventricular electrode position.
Das Ausmaß der elektrischen ventrikulären Desynchronisation bei reduzierter linksventrikulärer Funktion ist von Bedeutung für den Erfolg der Resynchronisationstherapie der Herzinsuffizienz mit biventrikulärer Stimulation. Das Ziel der Untersuchung besteht in der nichtinvasiven Messung der elektrischen inter-ventrikulären Desynchronisation mit und ohne ischämische Herzerkrankung bei kardialen Resynchronisationstherapie Respondern. Bei Patienten mit 25,3 ± 7,3 % reduzierter linksventrikulärer Ejektionsfraktion und 166,9 ± 38,5 ms QRS-Dauer wurde das transösophageale linksventrikuläre EKG abgeleitet. Die QRS-Dauer korrelierte mit dem interventrikulären und links-ventrikulären Delay bei Resynchronisationstherapie Respondern mit nicht-ischämischer Herzerkrankung.
Distribution of esophageal interventricular conduction delays in CRT patients and healthy subjects
(2015)
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things (IoT). Whereas the lower layers (IEEE802.15.4 and 6LoWPAN) are already well defined and consolidated with regard to frame formats, header compression, routing protocols and commissioning procedures, there is still an abundant choice of possibilities on the application layer. Currently, various groups are working towards standardization of the application layer, i.e. the ETSI Technical Committee on M2M, the IP for Smart Objects (IPSO) Alliance, Lightweight M2M (LWM2M) protocol of the Open Mobile Alliance (OMA), and OneM2M. This multitude of approaches leaves the system developer with the agony of choice. This paper selects, presents and explains one of the promising solutions, discusses its strengths and weaknesses, and demonstrates its implementation.
In the dual membrane fuel cell (DM-Cell), protons formed at the anode and oxygen ions formed at the cathode migrate through their respective dense electrolytes to react and form water in a porous composite layer called dual membrane (DM). The DM-Cell concept was experimentally proven (as detailed in Part I of this paper). To describe the electrochemical processes occurring in this novel fuel cell, a mathematical model has been developed which focuses on the DM as the characteristic feature of the DM-Cell. In the model, the porous composite DM is treated as a continuum medium characterized by effective macro-homogeneous properties. To simulate the polarization behavior of the DM-Cell, the potential distribution in the DM is related to the flux of protons and oxygen ions in the conducting phases by introducing kinetic and transport equations into charge balances. Since water pressure may affect the overall formation rate, water mass balances across the DM and transport equations are also considered. The satisfactory comparison with available experimental results suggests that the model provides sound indications on the effects of key design parameters and operating conditions on cell behavior and performance.
Smoothie: a solution for device and content independent applications including 3D imaging as content
(2014)
Network landscape of recent time contains many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information represented in different data formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of effort is being made in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including those that are mobile, considering the individual situation of the end user. Till today the research is going on in different parts of the world but the task is not completed yet. The goal of this research work is to find a way to solve the above stated problems by investigating system architectures to provide unconstrained, continuous and personalized access to the content and interactive applications everywhere and at anytime with different devices. As a Solution of the problem considered, a new architecture named “Smoothie” is proposed.
Flexible Three-dimensional Camera-based Reconstruction and Calibration of Tracked Instruments
(2016)
Wireless sensor networks have found their way into a wide range of applications among which environmental monitoring systems have attracted increasing interests of researchers. The main challenges for the applications are scalability of the network size and energy efficiency of the spatially distributed motes. These devices are mostly battery-powered and spend most of their energy budget on the radio transceiver module. A so-called Wake-On-Radio (WOR) technology can be used to achieve a reasonable balance among power consumption, range, complexity and response time. In this paper, a novel design for integration of WOR into IEEE802.1.5.4 is presented, which flexibly allows trade-offs in energy consumption between sender and receiver station, between real-time capability and energy consumption. For identical behavior, the proposed scheme is significantly more efficient than other schemes, which were proposed in recent publications, while preserving backward compatibility with standard IEEE802.15.4 transceivers.