Refine
Year of publication
Document Type
- Conference Proceeding (647) (remove)
Language
- English (486)
- German (159)
- Multiple languages (1)
- Russian (1)
Keywords
- Gamification (9)
- Kommunikation (9)
- Assistive Technology (8)
- Produktion (8)
- Ausbildung (7)
- Design (6)
- Deafblindness (5)
- Eingebettetes System (5)
- Energieversorgung (5)
- Heart rhythm model (5)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (145)
- Fakultät Medien und Informationswesen (M+I) (104)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (80)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (70)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (64)
- ACI - Affective and Cognitive Institute (32)
- INES - Institut für Energiesystemtechnik (25)
- IMLA - Institute for Machine Learning and Analytics (6)
- Zentrale Einrichtungen (6)
RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications
(2020)
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used – short Transmission Time Interval (TTI), Time-Division Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable end-to-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
Industrie 4.0 bedeutet nicht nur einen Wandel der technischen Möglichkeiten und Arbeitsbedingungen, sondern auch einen Bedarf an neuen, sich kontinuierlich weiterentwickelnden Kompetenzen und die Bereitschaft der Beschäftigten, Veränderungen mitzugestalten. Spielerische Ansätze der Kompetenzentwicklung können v.a. bei weiterbildungsfernen Mitarbeitern hilfreich sein, um das komplexe Thema verständlich zu vermitteln. Der Beitrag beschreibt ein Seminarkonzept mit integriertem Brettspiel, mit dem Teilnehmer anhand eines fiktiven Unternehmens (Müller GmbH) die Transformation eines Unternehmens in die Industrie 4.0 spielerisch nachvollziehen. Dieses Konzept erweist sich in einer ersten Evaluation als durchaus vielversprechend.
BiCI users’ sensitivity to interaural phase differences for single- and multi-channel stimulation
(2016)
Novel manufacturing technologies, such as printed electronics, may enable future applications for the Internet of Everything like large-area sensor devices, disposable security, and identification tags. Printed physically unclonable functions (PUFs) are promising candidates to be embedded as hardware security keys into lightweight identification devices. We investigate hybrid PUFs based on a printed PUF core. The statistics on the intra- and inter-hamming distance distributions indicate a performance suitable for identification purposes. Our evaluations are based on statistical simulations of the PUF core circuit and the thereof generated challenge-response pairs. The analysis shows that hardware-intrinsic security features can be realized with printed lightweight devices.
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).
Biological in situ methanation: Gassing concept and feeding strategy for enhanced performance
(2017)
The expansion of fluctuating renewable electricity production from wind and solar energy requires huge storage capacities. Power-to-gas (PtG) can contribute to tackle that issue via a two-step process, the electrolytic production of hydrogen and a subsequent methanation step (with additional CO2). The resulting fully grid compatible methane, also known as synthetic natural gas (SNG), can be both stored and transported in the vast existing natural gas infrastructure.
To overcome current major drawbacks of PtG, the relatively low efficiency and the high costs, we developed an improved method for the methanation step. In our approach we use a further development of the biological in situ methanation of hydrogen in biogas plants. Because this strategy uses directly internal residual CO2 from the biogas process in the biogas plant, you neither need additional external CO2 nor special reactors. Thus, PtG is combined with the production of an upgraded highly methane rich raw biogas.
However, the low solubility of hydrogen in aqueous solutions and the exploitation of the maximum biological production rates are still an engineering challenge for high performance biological in situ methanation.
In our experiments a setup with membrane gassing turned out to be most promising to ensure a sufficient gas liquid mass transfer of the hydrogen. The monitoring of hydrogenotrophic and aceticlastic archaea showed some adaption of these microbial subgroups to the hydrogen feed.
In order to achieve high methane concentrations of more than 90 % in the raw biogas a CO2-controlled hydrogen feed flow rate is suggested. For methane concentrations lower than 90 % simple current controlled hydrogen supply can be applied.
Vorgestellt wird ein Konzept zur biologischen Methanisierung von Wasserstoff direkt in Biogasreaktoren, mit dem durch Membranbegasung der Methangehalt des Biogases auf > 96 % erhöht werden kann. Essentiell zum Erreichen solch hoher Methanwerte sind die Einhaltung eines optimalen pH-Bereichs und die Vermeidung von H2-Akkumulation. Im Falle einer Limitierung der Methanbildungsrate durch den eigentlichen anaeroben Abbauprozess der Biomasse ist auch eine externe Zufuhr von CO2 zur weiteren Methanbildung denkbar. Das Verfahren soll weiter optimiert und in einem von der Deutschen Bundesstiftung Umwelt geförderten Projekt in der Biogasanlage einer regionalen Käserei in der Praxis getestet werden. Die hier angestrebte Kombination aus dezentraler Abfallverwertung und Eigenenergieerzeugung eines lebensmittelverarbeitenden Betriebs unter Einbindung in ein intelligentes Erneuerbare Energien - Konzept soll einen zusätzlichen Mehrwert liefern.
Remote code attestation protocols are an essential building block to offer a reasonable system security for wireless embedded devices. In the work at hand we investigate in detail the trustability of a purely software-based remote code attestation based inference mechanism over the wireless when e.g. running the prominent protocol derivate SoftWare-based ATTestation for Embedded Devices (SWATT). Besides the disclosure of pitfalls of such a protocol class we also point out good parameter choices which allow at least a meaningful plausibility check with a balanced false positive and false negative ratio.
Covert- and side-channels as well as techniques to establish them in cloud computing are in focus of research for quite some time. However, not many concrete mitigation methods have been developed and even less have been adapted and concretely implemented by cloud providers. Thus, we recently conceptually proposed C 3 -Sched a CPU scheduling based approach to mitigate L2 cache covert-channels. Instead of flushing the cache on every context switch, we schedule trusted virtual machines to create noise which prevents potential covert-channels. Additionally, our approach aims on preserving performance by utilizing existing instead of artificial workload while reducing covert-channel related cache flushes to cases where not enough noise has been achieved. In this work we evaluate cache covert-channel mitigation and performance impact of our integration of C 3 -Sched in the XEN credit scheduler. Moreover, we compare it to naive solutions and more competitive approaches.
The importance of obtaining simultaneous particle size and concentration values has grown up with continuing discussion of the health effects, of internal combustion engine generated particulate emissions and in particular of Diesel soot emissions. In the present work an aerosol measurement system is described that delivers information about particle size and concentration directly from the undiluted exhaust gas.
Using three laser diodes of different wavelengths which form one parallel light beam, each spectral attenuation is analysed by a single detector and the particle diameter and concentration is evaluated by the use of the Mie theory and shown on-line at a frequency of 1 Hz. The system includes an optical long-path-cell (White principle) with an adjustable path length from 2.5 to 15 m, which allows the analysis within a broad concentration range.
On-line measurements of the particulate emissions in the hot, undiluted exhaust of Diesel engines are presented under stationary and transient engine’s load conditions. Mean particle diameters well below 100 nm are detected for modern Diesel engines. The measured particle concentration corresponds excellently with the traditional gravimetrical measurements of the diluted exhaust. Additionally, measurements of particle emissions (mostly condensed hydricarbons) from a two-stroke engine are presented and discussed.
The Internet of Things (IoT) application has becoming progressively in-demand, most notably for the embedded devices (ED). However, each device has its own difference in computational capabilities, memory usage, and energy resources in connecting to the Internet by using Wireless Sensor Networks (WSNs). In order for this to be achievable, the WSNs that form the bulk of the IoT implementation requires a new set of technologies and protocol that would have a defined area, in which it addresses. Thus, IPv6 Low Power Area Network (6LoWPAN) was designed by the Internet Engineering Task Force (IETF) as a standard network for ED. Nevertheless, the communication between ED and 6LoWPAN requires appropriate routing protocols for it to achieve the efficient Quality of Service (QoS). Among the protocols of 6LoWPAN network, RPL is considered to be the best protocol, however its Energy Consumption (EC) and Routing Overhead (RO) is considerably high when it is implemented in a large network. Therefore, this paper would propose the HRPL to enchance the RPL protocol in reducing the EC and RO. In this study, the researchers would present the performance of RPL and HRPL in terms of EC, Control traffic Overhead (CTO) and latency based on the simulation of the 6LoWPAN network in fixed environment using COOJA simulator. The results show HRPL protocol achieves better performance in all the tested topology in terms of EC and CTO. However, the latency of HRPL only improves in chain topology compared with RPL. We found that further research is required to study the relationship between the latency and the load of packet transmission in order to optimize the EC usage.
The development of Internet of Things (IoT) embedded devices is proliferating, especially in the smart home automation system. However, the devices unfortunately are imposing overhead on the IoT network. Thus, the Internet Engineering Task Force (IETF) have introduced the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) to provide a solution to this constraint. 6LoWPAN is an Internet Protocol (IP) based communication where it allows each device to connect to the Internet directly. As a result, the power consumption is reduced. However, the limitation of data transmission frame size of the IPv6 Routing Protocol for Low-power and Lossy Network’s (RPL’s) had made it to be the running overhead, and thus consequently degrades the performance of the network in terms of Quality of Service (QoS), especially in a large network. Therefore, HRPL was developed to enhance the RPL protocol to minimize redundant retransmission that causes the routing overhead. We introduced the T-Cut Off Delay to set the limit of the delay and the H field to respond to actions taken within the T-Cut Off Delay. Thus, this paper presents the comparison performance assessment of HRPL between simulation and real-world scenarios (6LoWPAN Smart Home System (6LoSH) testbed) in validating the HRPL functionalities. Our results show that HRPL had successfully reduced the routing overhead when implemented in 6LoSH. The observed Control Traffic Overhead (CTO) packet difference between each experiment is 7.1%, and the convergence time is 9.3%. Further research is recommended to be conducted for these metrics: latency, Packet Delivery Ratio (PDR), and throughput.
In the last decade, IPv6 over Low power Wireless Personal Area Networks (IEEE802.15.4), also known as 6LoWPAN, has well evolved as a primary contender for short range wireless communications and holds the promise of an Internet of Things, which is completely based on the Internet Protocol. The authors' team has developed a 6LoWPAN protocol stack in C language, the stack without the necessity to use a specific design environment or operating system. It is highly flexible, modular, and portable and can be enhanced by several interesting modules, like a Wake-On-Radio-(WOR) MAC layer or a TLS1.2 based security sublayer. The stack is made available as open source at https://github.com/hso-esk/emb6. It was extensively tested on the Automated Physical Testbed (APTB) for Wireless Systems, which is available in the authors' lab and allows a flexible setup and full control of arbitrary topologies. The results of the measurements demonstrate a very good stability and short-term with long-term performance also under dynamic conditions.
The overview of public key infrastructure based security approaches for vehicular communications
(2015)
Wireless communication systems more and more become part of our daily live. Especially with the Internet of Things (IoT) the overall connectivity increases rapidly since everyday objects become part of the global network. For this purpose several new wireless protocols have arisen, whereas 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) can be seen as one of the most important protocols within this sector. Originally designed on top of the IEEE802.15.4 standard it is a subject to various adaptions that will allow to use 6LoWPAN over different technologies; e.g. DECT Ultra Low Energy (ULE). Although this high connectivity offers a lot of new possibilities, there are several requirements and pitfalls coming along with such new systems. With an increasing number of connected devices the interoperability between different providers is one of the biggest challenges, which makes it necessary to verify the functionality and stability of the devices and the network. Therefore testing becomes one of the key components that decides on success or failure of such a system. Although there are several protocol implementations commonly available; e.g., for IoT based systems, there is still a lack of according tools and environments as well as for functional and conformance testing. This article describes the architecture and functioning of the proposed test framework based on Testing and Test Control Notation Version 3 (TTCN-3) for 6LoWPAN over ULE networks.
The CAN bus still is an important fieldbus in various domains, e.g. for in-car communication or automation applications. To counter security threats and concerns in such scenarios we design, implement, and evaluate the use of an end-to-end security concept based on the Transport Layer Security protocol. It is used to establish authenticated, integrity-checked, and confidential communication channels between field devices connected via CAN. Our performance measurements show that it is possible to use TLS at least for non time-critical applications, as well as for generic embedded networks.
Cell lifetime diagnostics and system be-havior of stationary LFP/graphite lithium-ion batteries
(2018)
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user’s hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation’s virtual elements by the user’s very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
The identification and quantification of compounds in the gas phase becomes of increasing interest in the context of environmental protection, as well as in the analytical field. In this respect, the high extinction coefficients of vapours and gases in the ultraviolet wavelength region allow a very sensitive measurement system. In addition, the increased performance of the components necessary for setting up a measurement system, such as fibres, light sources and detectors has been improved. In particular the light sources and detectors offer improved stability, and the deep UV performance and solarisation resistance of fused silica fibres allow have been significantly optimized in the past years. Therefore a compact and reliable detection system with high measuring accuracy is developed. Within this paper possible applications of the system under development and recent results will be discussed.
We propose in this work to solve privacy preserving set relations performed by a third party in an outsourced configuration. We argue that solving the disjointness relation based on Bloom filters is a new contribution in particular by having another layer of privacy on the sets cardinality. We propose to compose the set relations in a slightly different way by applying a keyed hash function. Besides discussing the correctness of the set relations, we analyze how this impacts the privacy of the sets content as well as providing privacy on the sets cardinality. We are in particular interested in how having bits overlapping in the Bloom filters impacts the privacy level of our approach. Finally, we present our results with real-world parameters in two concrete scenarios.
Sichere Detektion von Menschen in der Mensch-Roboter-Kollaboration mit Time-of-Flight Kameras
(2017)
In safety critical applications wireless technologies are not widely spread. This is mainly due to reliability and latency requirements. In this paper a new wireless architecture is presented which will allow for customizing the latency and reliability for every single participant within the network. The architecture allows for building up a network of inhomogeneous participants with different reliability and latency requirements. The used TDMA scheme with TDD as duplex method is acting gentle on resources. Therefore participants with different processing and energy resources are able to participate.
Neuromorphic computing systems have demonstrated many advantages for popular classification problems with significantly less computational resources. We present in this paper the design, fabrication and training of a programmable neuromorphic circuit, which is based on printed electrolytegated field-effect transistor (EGFET). Based on printable neuron architecture involving several resistors and one transistor, the proposed circuit can realize multiply-add and activation functions. The functionality of the circuit, i.e. the weights of the neural network, can be set during a post-fabrication step in form of printing resistors to the crossbar. Besides the fabrication of a programmable neuron, we also provide a learning algorithm, tailored to the requirements of the technology and the proposed programmable neuron design, which is verified through simulations. The proposed neuromorphic circuit operates at 5V and occupies 385mm 2 of area.
Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein
(2019)
The visualization of heart rhythm disturbance and atrial fibrillation therapy allow the optimization of new cardiac catheter ablations. With the simulation software CST (Computer Simulation Technology, Darmstadt) electromagnetic and thermal simulations can be carried out to analyze and optimize different heart rhythm disturbance and cardiac catheters for pulmonary vein isolation. Another form of visualization is provided by haptic, three-dimensional print models. These models can be produced using an additive manufacturing method, such as a 3D printer. The aim of the study was to produce a 3D print of the Offenburg heart rhythm model with a representation of an atrial fibrillation ablation procedure to improve the visualization of simulation of cardiac catheter ablation.
The basis of 3D printing was the Offenburg heart rhythm model and the associated simulation of cryoablation of the pulmonary vein. The thermal simulation shows the pulmonary vein isolation of the left inferior pulmonary vein with the cryoballoon catheter Arctic Front AdvanceTM from Medtronic. After running through the simulation, the thermal propagation during the procedure was shown in the form of different colors. The three-dimensional print models were constructed on the base of the described simulation in a CAD program. Four different 3D printers are available for this purpose in a rapid prototyping laboratory at the University of Applied Science Offenburg. Two different printing processes were used: 1. a binder jetting printer with polymer gypsum and 2. a multi-material printer with photopolymer. A final print model with additional representation of the esophagus and internal esophagus catheter was also prepared for printing.
With the help of the thermal simulation results and the subsequent evaluation, it was possible to make a conclusion about the propagation of the cold emanating from the catheter in the myocardium and the surrounding tissue. It could be measured that already 3 mm from the balloon surface into the myocardium the temperature drops to 25 °C. The simulation model was printed using two 3D printing methods. Both methods as well as the different printing materials offer different advantages and disadvantages. While the first model made of polymer gypsum can be produced quickly and cheaply, the second model made of photopolymer takes five times longer and was twice as expensive. On the other hand, the second model offers significantly better properties and was more durable overall. All relevant parts, especially the balloon catheter and the conduction, are realistically represented. Only the thermal propagation in the form of different colors is not shown on this model.
Three-dimensional heart rhythm models as well as virtual simulations allow a very good visualization of complex cardiac rhythm therapy and atrial fibrillation treatment methods. The printed models can be used for optimization and demonstration of cryoballoon catheter ablation in patients with atrial fibrillation.
IPv6 over LoRaWAN™
(2016)
Although short-range wireless communication explicitly targets local and regional applications, range continues to be a highly important issue. The range directly depends on the so-called link budget, which can be increased by the choice of modulation and coding schemes. The recent transceiver generation in particular comes with extensive and flexible support for software-defined radio (SDR). The SX127× family from Semtech Corp. is a member of this device class and promises significant benefits for range, robust performance, and battery lifetime compared to competing technologies. This contribution gives a short overview of the technologies to support Long Range (LoRa™) and the corresponding Layer 2 protocol (LoRaWAN™). It particularly describes the possibility to combine the Internet Protocol, i.e. IPv6, into LoRaWAN™, so that it can be directly integrated into a full-fledged Internet of Things (IoT). The proposed solution, which we name 6LoRaWAN, has been implemented and tested; results of the experiments are also shown in this paper.
Wow, You Are Terrible at This!: An Intercultural Study on Virtual Agents Giving Mixed Feedback
(2020)
While the effects of virtual agents in terms of likeability, uncanniness, etc. are well explored, it is unclear how their appearance and the feedback they give affects people's reactions. Is critical feedback from an agent embodied as a mouse or a robot taken less serious than from a human agent? In an intercultural study with 120 participants from Germany and the US, participants had to find hidden objects in a game and received feedback on their performance by virtual agents with different appearances. As some levels were designed to be unsolvable, critical feedback was unavoidable. We hypothesized that feedback would be taken more serious, the more human the agent looked. Also, we expected the subjects from the US to react more sensitively to criticism. Surprisingly, our results showed that the agents' appearance did not significantly change the participants' perception. Also, while we found highly significant differences in inspirational and motivational effects as well as in perceived task load between the two cultures, the reactions to criticism were contrary to expectations based on established cultural models. This work improves our understanding on how affective virtual agents are to be designed, both with respect to culture and to dialogue strategies.
The Transport Layer Security (TLS) protocol is a cornerstone of secure network communication, not only for online banking, e-commerce, and social media, but also for industrial communication and cyber-physical systems. Unfortunately, implementing TLS correctly is very challenging, as becomes evident by considering the high frequency of bugfixes filed for many TLS implementations. Given the high significance of TLS, advancing the quality of implementations is a sustained pursuit. We strive to support these efforts by presenting a novel, response-distribution guided fuzzing algorithm for differential testing of black-box TLS implementations. Our algorithm generates highly diverse and mostly-valid TLS stimulation messages, which evoke more behavioral discrepancies in TLS server implementations than other algorithms. We evaluate our algorithm using 37 different TLS implementations and discuss―by means of a case study―how the resulting data allows to assess and improve not only implementations of TLS but also to identify underspecified corner cases. We introduce suspiciousness as a per-implementation metric of anomalous implementation behavior and find that more recent or bug-fixed implementations tend to have a lower suspiciousness score. Our contribution is complementary to existing tools and approaches in the area, and can help reveal implementation flaws and avoid regression. While being presented for TLS, we expect our algorithm's guidance scheme to be applicable and useful also in other contexts. Source code and data is made available for fellow researchers in order to stimulate discussions and invite others to benefit from and advance our work.
The Datagram Transport Layer Security (DTLS) protocol has been designed to provide end-to-end security over unreliable communication links. Where its connection establishment is concerned, DTLS copes with potential loss of protocol messages by implementing its own loss detection and retransmission scheme. However, the default scheme turns out to be suboptimal for links with high transmission error rates and low data rates, such as wireless links in electromagnetically harsh industrial environments. Therefore, in this paper, as a first step we provide an analysis of the standard DTLS handshake's performance under such adverse transmission conditions. Our studies are based on simulations that model message loss as the result of bit transmission errors. We consider several handshake variants, including endpoint authentication via pre-shared keys or certificates. As a second step, we propose and evaluate modifications to the way message loss is dealt with during the handshake, making DTLS deployable in situations which are prohibitive for default DTLS.
Short-term load forecasting (STLF) has been playing a key role in the electricity sector for several decades, due to the need for aligning energy generation with the demand and the financial risk connected with forecasting errors. Following the top-down approach, forecasts are calculated for aggregated load profiles, meaning the sum of singular loads from consumers belonging to a balancing group. Due to the emerging flexible loads, there is an increasing relevance for STLF of individual factories. These load profiles are typically more stochastic compared to aggregated ones, which imposes new requirements to forecasting methods and tools with a bottom-up approach. The increasing digitalization in industry with enhanced data availability as well as smart metering are enablers for improved load forecasts. There is a need for STLF tools processing live data with a high temporal resolution in the minute range. Furthermore, behin-the-meter (BTM) data from various sources like submetering and production planning data should be integrated in the models. In this case, STLF is becoming a big data problem so that machine learning (ML) methods are required. The research project “GaIN” investigates the improvement of the STLF quality of an energy utility using BTM data and innovative ML models. This paper describes the project scope, proposes a detailed definition for a benchmark and evaluates the readiness of existing STLF methods to fulfil the described requirements as a reviewing paper.
The review highlights that recent STLF investigations focus on ML methods. Especially hybrid models gain more and more importance. ML can outperform classical methods in terms of automation degree and forecasting accuracy. Nevertheless, the potential for improving forecasting accuracy by the use of ML models depends on the underlying data and the types of input variables. The described methods in the analyzed publications only partially fulfil the tool requirements for STLF on company level. There is still a need to develop suitable ML methods to integrate the expanded data base in order to improve load forecasts on company level.
Colored glass products with various printing technologies are becoming more important in industry. The aim is to achieve individual solution in a very short delivery time. Conventional thermal treatment of burning glasses in oven for tempered color printing has predominant issues with high time consumption, energy consumption and manufacturing cost. It requires alternative process development.
This paper proposes laser process to overcome issues in conventional treatment with the latest results of tempering colored glass. Samples have been analyzed with the scanning electron microscope (SEM). Two different laser systems have been applied and the glass has been printed with black paste.
One of the challenges for autonomous driving in general is to detect objects in the car's camera images. In the Audi Autonomous Driving Cup (AADC), among those objects are other cars, adult and child pedestrians andemergency vehicle lighting. We show that with recent deep learning networks weare able to detect these objects reliably on the limited Hardware of the model cars. Also, the same deep network is used to detect road features like mid lines, stoplines and even complete crossings. Best results are achieved using Faster R-CNNwith Inception v2 showing an overall accuracy of 0.84 at 7 Hz.
When designing and installing Indoor Positioning Systems, several interrelated tasks have to be solved to find an optimum placement of the Access Points. For this purpose, a mathematical model for a predefined number of access points indoors is presented. Two iterative algorithms for the minimization of localization error of a mobile object are described. Both algorithms use local search technique and signal level probabilities. Previously registered signal strengths maps were used in computer simulation.
HiSiMo cast irons are frequently used as material for high temperature components in engines as e.g. exhaust manifolds and turbo chargers. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. The combination of thermal transients with mechanical load cycles results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material and, after a certain number of loading cycles, to failure of the component. In this paper (Part I), the low-cycle fatigue (LCF) and TMF properties of HiSiMo are investigated in uniaxial tests and the damage mechanisms are addressed. On the basis of the experimental results a fatigue life model is developed which is based on elastic, plastic and creep fracture mechanics results of short cracks, so that time and temperature dependent effects on damage are taken into account. The model can be used to estimate the fatigue life of components by means of finite-element calculations (Part II of the paper).
RFID- Frontend ISO 15693
(2008)
The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.
Increased knowledge transfer through the integration of research projects into university teaching
(2019)
This paper describes the integration of the research project "Characterization of Color Vision using Spectroscopy and
Nanotechnology: Application to Media Photonics" into an engineering course in the field of media technology. The aim
is to develop the existing learning concept towards a more research-oriented teaching. Involving students in research
projects as part of the learning process provides a deeper insight into current research topics and the key elements of
scientific work. This makes it easier for students to recognize the importance of the acquired theoretical knowledge for
the practice, which enables them to derive new insights of their own.
This paper explains the realization of a concept for research-oriented photonics education. Using the example of the integration of an actual PhD project, it is shown how students are familiarized with the topic of research and scientific work in the first semesters. Typical research activities are included as essential parts of the learning process. Research should be made visible and tangible for the students. The authors will present all aspects of the learning environment, their impressions and experiences with the implemented scenario, as well as first evaluation results of the students.
The authors explain a developed concept for research-oriented education in optics and photonics. It is presented which
goals are to be achieved, which strategies have been developed and how these can be implemented in a blended learning
scenario. The goal of our education is the best possible qualification of the students on the basis of a strong scientific and
research-oriented education, which also includes the acquisition of important interdisciplinary competences. All phases
of a research process are to be mapped in the learning process and offer students an insight into current research topics in
optics and photonics.
Cardiac resynchronization therapy (CRT) with biventricular pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronization and reduced left ventricular (LV) ejection fraction. The aim of this study was to evaluate electrical right atrial (RA), left atrial (LA), right ventricular (RV) and LV conduction delay with novel telemetric signal averaging electrocardiography (SAECG) in implantable cardioverter defibrillator (ICD) P to better select P for CRT and to improve hemodynamics in cardiac pacing.
Methods: ICD-P (n=8, age 70.8 ± 9.0 years; 2 females, 6 males) with VVI-ICD (n=4), DDD-ICD (n=3) and CRT-ICD (n=1) (Medtronic, Inc., Minneapolis, MN, USA) were analysed with telemetric ECG recording by Medronic programmer 2090, ECG cable 2090AB, PCSU1000 oscilloscope with Pc-Lab2000 software (Velleman®) and novel National Intruments LabView SAECG software.
Results: Electrical RA conduction delay (RACD) was measured between onset and offset of RA deflection in the RAECG. Interatrial conduction delay (IACD) was measured between onset of RA deflection and onset of far-field LA deflection in the RAECG. Interventricular conduction delay (IVCD) was measured between onset of RV deflection in the RVECG and onset of LV deflection in the LVECG. Telemetric SAECG recording was possible in all ICD-P with a mean of 11.7 ± 4.4 SAECG heart beats, 97.6 ± 33.7 ms QRS duration, 81.5 ± 44.6 ms RACD, 62.8 ± 28.4 ms RV conduction delay, 143.7 ± 71.4 ms right cardiac AV delay, 41.5 ms LA conduction delay, 101.6 ms LV conduction delay, 176.8 ms left cardiac AV delay, 53.6 ms IACD and 93 ms IVCD.
Conclusions: Determination of RA, LA, RV and LV conduction delay, IACD, IVCD, right and left cardiac AV delay by telemetric SAECG recording using LabView SAECG technique may be useful parameters of atrial and ventricular desynchronization to improve P selection for CRT and hemodynamics in cardiac pacing.
Spectral analysis of signal averaging electrocardiography in atrial and ventricular tachyarrhythmias
(2017)
Background: Targeting complex fractionated atrial electrograms detected by automated algorithms during ablation of persistent atrial fibrillation has produced conflicting outcomes in previous electrophysiological studies. The aim of the investigation was to evaluate atrial and ventricular high frequency fractionated electrical signals with signal averaging technique.
Methods: Signal averaging electrocardiography (ECG) allows high resolution ECG technique to eliminate interference noise signals in the recorded ECG. The algorithm uses automatic ECG trigger function for signal averaged transthoracic, transesophageal and intracardiac ECG signals with novel LabVIEW software (National Instruments, Austin, Texas, USA). For spectral analysis we used fast fourier transformation in combination with spectro-temporal mapping and wavelet transformation for evaluation of detailed information about the frequency and intensity of high frequency atrial and ventricular signals.
Results: Spectral-temporal mapping and wavelet transformation of the signal averaged ECG allowed the evaluation of high frequency fractionated atrial signals in patients with atrial fibrillation and high frequency ventricular signals in patients with ventricular tachycardia. The analysis in the time domain evaluated fractionated atrial signals at the end of the signal averaged P-wave and fractionated ventricular signals at the end of the QRS complex. The analysis in the frequency domain evaluated high frequency fractionated atrial signals during the P-wave and high frequency fractionated ventricular signals during QRS complex. The combination of analysis in the time and frequency domain allowed the evaluation of fractionated signals during atrial and ventricular conduction.
Conclusions: Spectral analysis of signal averaging electrocardiography with novel LabVIEW software can utilized to evaluate atrial and ventricular conduction delays in patients with atrial fibrillation and ventricular tachycardia. Complex fractionated atrial electrograms may be useful parameters to evaluate electrical cardiac arrhythmogenic signals in atrial fibrillation ablation.
Agile Business Intelligence als Beispiel für ein domänenspezifisch angepasstes Vorgehensmodell
(2016)
In public transportation, the motor pool often consists of various different vehicles bought over a duration of many years. Sometimes, they even differ within one batch bought at the same time. This poses a considerable challenge in the storage and allocation of spare parts, especially in the event of damage to a vehicle. Correctly assigning these parts before the vehicle reaches the workshop could significantly reduce both the downtime and, therefore, the actual costs for companies. In order to achieve this, the current software uses a simple probability calculation. To improve the performance, the data of specific companies was analysed, preprocessed and used with several modelling techniques to classify and, therefore, predict the spare parts to be used in the event of a faulty vehicle. We summarize our experience running through the steps of the Cross Industry Standard Process for Data Mining and compare the performance to the previously used probability. Gradient Boosting Trees turned out to be the best modeling technique for this special case.
This paper describes the use of the single-linkage
hierarchical clustering method in outlier detection for
manufactured metal work pieces. The main goal of the study is
to group defects that occur 5 mm into a work piece from the
edge, i.e., the border of the metal work piece. The goal is to
remove defects outside the area of interest as outliers.
According to the assumptions made for the performance
criteria, the single-linkage method has achieved better results
compared to other agglomeration methods.
Due to its numerous application fields and benefits, virtualization has become an interesting and attractive topic in computer and mobile systems, as it promises advantages for security and cost efficiency. However, it may bring additional performance overhead. Recently, CPU virtualization has become more popular for embedded platforms, where the performance overhead is especially critical. In this article, we present the measurements of the performance overhead of the two hypervisors Xen and Jailhouse on ARM processors in the context of the heavy load “Cpuburn-a8” application and compare it to a native Linux system running on ARM processors.
Deafblindness, also known as dual sensory loss, is the combination of sight and hearing impairments of such extent that it becomes difficult for one sense to compensate for the other. Communication issues are a key concern for the Deafblind community. We present the design and technical implementation of the Tactile Board: a mobile Augmentative and Alternative Communication (AAC) device for individuals with deafblindness. The Tactile Board allows text and speech to be translated into vibrotactile signs that are displayed real-time to the user via a haptic wearable. Our aim is to facilitate communication for the deafblind community, creating opportunities for these individuals to initiate and engage in social interactions with other people without the direct need of an intervener.
Co-Designing Assistive Tools to Support Social Interactions by Individuals Living with Deafblindness
(2020)
Deafblindness is a dual sensory impairment that affects many aspects of life, including mobility, access to information, communication, and social interactions. Furthermore, individuals living with deafblindness are under a high risk of social isolation. Therefore, we identified opportunities for applying assistive tools to support social interactions through co-ideation activities with members of the deafblind community. This work presents our co-design approach, lessons learned and directions for designing meaningful assistive tools for dual sensory loss.
Transcatheter aortiv valve implantation is a new safe strategy treatment for patients with symptomatic severe aortic stenosis and high operative risk. The aim of the study was to compare the pre-and post- muiscatheter aortiv valve implantation procedures to determine the atrioventricuktr conduction time as a potential predictor of permanent pacemaker therapy requirement after transcatheter aortiv valve implantation. The transcatheter aortiv valve implantation patients were divided into groups without pacemaker and with dual or single chamber pacemEtker with diffent atrioventrieular conduction time disturbance before and after transcatheter aortiv valve implantation. In heart failure, patients without permanent pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was prolonged after transcatheter aortiv valve implantation. In patients with permanent dual chamber pacemaker therapy after transcatheter aortiv valve implantation, atrioventricular conduction time was normalised with dual chaniber atrioventrieuku pacing mode. Atrioventricular conduction time may be a useful parameter to evaluate the risk of post-procedural atrioventricular conduction block and permanent pacemaker therapy in transcatheter north, valve implantation patients.
In the work at hand, we combine a Private Information Retrieval (PIR) protocol with Somewhat Homomorphic Encryption (SHE) and use Searchable Encryption (SE) with the objective to provide security and confidentiality features for a third party cloud security audit. During the auditing process, a third party auditor will act on behalf of a cloud service user to validate the security requirements performed by a cloud service provider. Our concrete contribution consists of developing a PIR protocol which is proceeding directly on a log database of encrypted data and allowing to retrieve a sum or a product of multiple encrypted elements. Subsequently, we concretely apply our new form of PIR protocol to a cloud audit use case where searchable encryption is employed to allow additional confidentiality requirements to the privacy of the user. Exemplarily we are considering and evaluating an audit of client accesses to a controlled resource provided by a cloud service provider.
This work discusses several use cases of post-mortem mobile device tracking in which privacy is required e.g. due to client-confidentiality agreements and sensibility of data from government agencies as well as mobile telecommunication providers. We argue that our proposed Bloomfilter based privacy approach is a valuable technical building block for the arising General Data Protection Regulation (GDPR) requirements in this area. In short, we apply a solution based on the Bloom filters data structure that allows a 3rd party to performsome privacy saving setrelations on a mobiletelco’s access logfile or other mobile access logfile from harvesting parties without revealing any other mobile users in the proximity of a mobile base station but still allowing to track perpetrators.
In a Semi-autonomic cloud auditing architecture we weaved in privacy enhancing mechanisms [15] by applying the public key version of the Somewhat homomorphic encryption (SHE) scheme from [4]. It turns out that the performance of the SHE can be significantly improved by carefully deriving relevant crypto parameters from the concrete cloud auditing use cases for which the scheme serves as a privacy enhancing approach. We provide a generic algorithm for finding good SHE parameters with respect to a given use case scenario by analyzing and taking into consideration security, correctness and performance of the scheme. Also, to show the relevance of our proposed algorithms we apply it to two predominant cloud auditing use cases.
Enthält die Artikel:
"Smoothie:a solution for device and content independent applications including 3D imaging as content" von Razia Sultana und Andreas Christ, S. 13-18
"Future of Logging in the Crisis of Cloud Security", von Sai Manoj Marepalli, Razia Sultana und Andreas Christ, S. 60-64
Smoothie: a solution for device and content independent applications including 3D imaging as content
(2014)
Network landscape of recent time contains many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information represented in different data formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of effort is being made in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including those that are mobile, considering the individual situation of the end user. Till today the research is going on in different parts of the world but the task is not completed yet. The goal of this research work is to find a way to solve the above stated problems by investigating system architectures to provide unconstrained, continuous and personalized access to the content and interactive applications everywhere and at anytime with different devices. As a Solution of the problem considered, a new architecture named “Smoothie” is proposed.
Optische Navigationssysteme weisen bisher eine eindeutige Trennung zwischen nachverfolgendem Gerät (Tool Tracker) und nachverfolgten Geräten (Tracked Tools) auf. In dieser Arbeit wird ein neues Konzept vorgestellt, dass diese Trennung aufhebt: Jedes Tracked Tool ist gleichzeitig auch Tool Tracker und besteht aus Marker-LEDs sowie mindestens einer Kamera, mit deren Hilfe andere Tracker in Lage und Orientierung nachverfolgt werden können. Bei Verwendung von nur einer Kamera geschieht dies mittels Pose Estimation, ab zwei Kameras werden die Marker-LEDs trianguliert. Diese Arbeit beinhaltet die Vorstellung des neuen Peer-To-Peer-Tracking-Konzepts, einen sehr schnellen Pose-Estimation-Algorithmus für beliebig viele Marker sowie die Klärung der Frage, ob die mit Pose Estimation erreichbare Genauigkeit vergleichbar mit der eines Stereo-Kamera-Systems ist und den Anforderungen an die chirurgische Navigation gerecht wird.
An der Fachhochschule Offenburg wird der Design-Kit FHO_MTC_CMOS_035_v1.0 erstellt. Mit Hilfe dieses Kits lassen sich Designs in der AMI O.35 Mikrometer Technologie entwerfen. Alle durchgeführten Arbeiten werden durch den Entwurf eines Lottozahlengenerator-Chips verifiziert, der gefertigt wird. Damit sind alle wesentlichen Schritte bekannt, die für die Aufbereitung eines Design-Kits für beliebige Technologien für die Mentor-Tools erforderlich sind. Der Design-Kit wird für alle MPC-Mitglieder freigegen, die eine NDA für AMI bei Europractice unterzeichnet haben.
Formal Description of Use Cases for Industry 4.0 Maintenance Processes Using Blockchain Technology
(2019)
Maintenance processes in Industry 4.0 applications try to achieve a high degree of quality to reduce the downtime of machinery. The monitoring of executed maintenance activities is challenging as in complex production setups, multiple stakeholders are involved. So, full transparency of the different activities and of the state of the machine can only be supported, if these stakeholders trust each other. Therefore, distributed ledger technologies, like Blockchain, can be promising candidates for supporting such applications. The goal of this paper is a formal description of business and technical interactions between non-trustful stakeholders in the context of Industry 4.0 maintenance processes using distributed ledger technologies. It also covers the integration of smart contracts for automated triggering of activities.
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows a lot of advantages and options in comparison to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. Using fiber-optic elements for controlled light-guiding, the TLC-method was significantly improved: the new HPTLC-system is able to measure simultaneously at different wavelengths without destroying the plate surface or the analytes on the surface. For registration of the sample distribution on a HPTLC-plate we developed a new and sturdy diode-array HPTLC- scanner which allows registration of spectra on the TLC- plates in the range of 198 nm to 610 nm with a spectral resolution better than 1.2 nm. The spatial resolution on plate is better than 160 micrometers . In the spectral mode, the new HPTLC-scanner delivers much more information than the commonly used TLC-scanner. The measurement of 450 spectra of one separation track does not need more than three minutes. However, in the fixed wavelength mode the contour plot can be measured within 15 seconds. In this case, the signal will be summarized and averaged over a spectral range having FWHM from 10 nm to 25 nm depending on the substance under test. The new diode-array HPTLC-scanner makes various chemometric applications possible. The new method can be used easily in clinical diagnostic systems easily, e.g. for blood and uring investigations. In addition, new applications are possible. For example, the rich structured PAHs were studied. Although the separation is incomplete the 16 compounds can be quantified using suitable wavelengths.
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows many advantages when compared to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. For visualisation of the sample distribution on a HPTLC-plate we developed a new and sturdy HPTLC-scanner. The scanner allows simultaneous registrations of spectra in a range from 198 nm to 612 nm with a spectral resolution of better than 0.8 nm. The on-plate spatial resolution is better than 160 μm. The measurement of 450 spectra in one separation track does not need more than two minutes. The new diode-array scanner offers a fast survey over a TLC-separation and makes various chemometric applications possible. For compound identification a cross-correlation function is described to compare UV sample spectra with appropriate library data. The cross-correlation function herein described can also be used for purity testing. Unresolved peaks can be virtually separated by use of a least squares fit algorithm. In summary, the diode arry system delivers much more information than the commonly used TLC-scanner.
Quantitative Bestimmung von Clozapin im Serum mittels Dioden-Array Dünnschichtchromatographie
(2003)
In the course of the last few years, our students are becoming increasingly unhappy. Sometimes they stop attending lectures and even seem not to know how to behave correctly. It feels like they are getting on strike. Consequently, drop-out rates are sky-rocketing. The lecturers/professors are not happy either, adopting an “I-don’t-care” attitude.
An interdisciplinary, international team set in to find out: (1) What are the students unhappy about? Why is it becoming so difficult for them to cope? (2) What does the “I-don’t-care” attitude of professors actually mean? What do they care or not care about? (3) How far do the views of the parties correlate? Could some kind of mutual understanding be achieved?
The findings indicate that, at least at our universities, there is rather a long way to go from “Engineering versus Pedagogy” to “Engineering Pedagogy”.