Refine
Year of publication
Document Type
- Conference Proceeding (246) (remove)
Language
- English (196)
- German (48)
- Multiple languages (1)
- Russian (1)
Keywords
- Kommunikation (7)
- Eingebettetes System (5)
- Applikation (4)
- Brennstoffzelle (4)
- Energieversorgung (4)
- Herzkrankheit (4)
- Sensortechnik (4)
- Haustechnik (3)
- Messtechnik (3)
- Signaltechnik (3)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246) (remove)
The Metering Bus, also known as M-Bus, is a European standard EN13757-3 for reading out metering devices, like electricity, water, gas, or heat meters. Although real-life M-Bus networks can reach a significant size and complexity, only very simple protocol analyzers are available to observe and maintain such networks. In order to provide developers and installers with the ability to analyze the real bus signals easily, a web-based monitoring tool for the M-Bus has been designed and implemented. Combined with a physical bus interface it allows for measuring and recording the bus signals. For this at first a circuit has been developed, which transforms the voltage and current-modulated M-Bus signals to a voltage signal that can be read by a standard ADC and processed by an MCU. The bus signals and packets are displayed using a web server, which analyzes and classifies the frame fragments. As an additional feature an oscilloscope functionality is included in order to visualize the physical signal on the bus. This paper describes the development of the read-out circuit for the Wired M-Bus and the data recovery.
Since direct current high energy shock fulguration was initially performed in the mid 1980s, ablation of cardiac arrhythmias has come to widespread use. Today the most frequently used energy source for catheter ablation is radio frequency (RF). It was the German engineer Peter Osypka who made available the HAT 100 as the first simple commercial RF ablator.
Nevertheless, in the first years of ablation, physicians were effectively working in the dark. Until today with an increasing understanding of arrhythmia mechanisms, both at the atrial and ventricular levels, this curative technology has made tremendous progress. Now, due to crucial improvement of RF ablation generators, temperature and contact force sensor catheters in combination with non-flouroscopic electroanatomical mapping technologies, computerized temperature and impedance controlled radiofrequency catheter ablation can be used to cure all types of arrhythmias including atrial and ventricular fibrillation. For the latter, cooled ablation by saline solution irrigated catheters has been developed to a widely used standard method. This procedure resulting in pulmonary vein isolation requires transseptal puncture and is technically demanding. Nevertheless, it has shown to be more effective than antiarrhythmic drug therapy.
While earliest RF ablations were performed with non-steerable catheters, today are used steerable sensor catheters without or with external and internal cooling and tips of 4mm or 8mm length. Further innovations like integration of mapping and cardiac imaging give exact information of the number of pulmonary veins and branching patterns and help to correlate electrical signals with anatomical structures.
The magnetic navigation significantly improved the success rates and safety of catheter ablation. Thus, in most cases RF catheter ablation has developed in the treatment of supraventricular arrhythmias from an alternative approach to drug therapy into the first therapeutic choice providing low complication rates.
In future, robotic navigation will further simplify procedures and reduce radiation exposure of this curative approach.
Introduction: Despite lots of developments in the last years, radiofrequency ablation of rhythm diseases is a safe but still complex procedure that requires special experience and expertise of the physicians and biomedical engineers. Thus, there is a need of special trainings to become familiar with the different equipment and to explain several effects that can be observed during clinical routine.
Methods: The Offenburg University of Applied Sciences offers a biomedical engineering study path specialized in the fields of cardiology, electrophysiology and cardiac electronic implants. It`s Peter Osypka Institute for Pacing and Ablation provides teaching following the slogan “Learning by watching, touching and adjusting”. It conducts lots of trainings for students as well as young physicians interested in electrophysiology and radiofrequency ablation.
Results: In-vitro trainings will be provided using the Osypka HAT 200 and HAT300s, Stockert EPshuttle and SmartAblate system as well as the Boston EPT-1000XP and Maestro 3000 and the Radionics RFG-3E cardiac radio frequency ablation generators. All of them require different handling as well as special accessories like catheter connection cables or boxes and back plates. The participants will be trained in the setup of temperature, power and cut-off impedance dependent on different ablation catheters. Furthermore troubleshooting in hard- and software is part of the program. Performing procedures in pork or animal protein and using physiological saline solution to simulate the blood flow, they can study the influence of contact force and impedance on lesion geometry etc. and to avoid adverse effects like “plops”. Lots of catheter types are available: 4mm tip, 8mm standard and gold tip, open and closed irrigated tip ablation catheters of different companies. The experiments will be completed by measuring the lesion size dependent on the used catheter type and ablation settings.
Conclusion: In-vitro training in radiofrequency ablation is a challenge for biomedical engineering students and young physicians.
Introduction: Patient selection for cardiac resynchronization therapy (CRT) requires quantification of left ventricular conduction delay (LVCD). After implantation of biventricular pacing systems, individual AV delay (AVD) programming is essential to ensure hemodynamic response. To exclude adverse effects, AVD should exceed individual implant-related interatrial conduction times (IACT). As result of a pilot study, we proposed the development of a programmer-based transoesophageal left heart electrogram (LHE) recording to simplify both, LVCD and IACT measurement. This feature was implemented into the Biotronik ICS3000 programmer simultaneously with 3-channel surface ECG.
Methods: A 5F oesophageal electrode was perorally applied in 44 heart failure CRT-D patients (34m, 10f, 65±8 yrs., QRS=162±21ms). In position of maximum left ventricular deflection, oesophageal LVCD was measured between onsets of QRS in surface ECG and oesophageal left ventricular deflection. Then, in position of maximum left atrial deflection (LA), IACT in VDD operation (As-LA) was calculated by difference between programmed AV delay and the measured interval from onset of left atrial deflection to ventricular stimulus in the oesophageal electrogram. IACT in DDD operation (Ap-LA) was measured between atrial stimulus and LA..
Results: LVCD of the CRT patients was characterized by a minimum of 47ms with mean of 69±23ms. As-LA and Ap-LA were found to be 41±23ms and 125±25ms, resp., at mean. In 7 patients (15,9%), IACT measurement in DDD operation uncovered adverse AVD if left in factory settings. In this cases, Ap-LA exceeded the factory AVD. In 6 patients (13,6%), IACT in VDD operation was less than or equal 10ms indicating the need for short AVD.
Conclusion: Response to CRT requires distinct LVCD and AVD optimization. The ICS3000 oesophageal LHE feature can be utilized to measure LVCD in order to justify selection for CRT. IACT measurement simplifies AV delay optimization in patients with CRT systems irrespective of their make and model.
In-vivo and in-vitro comparison of implant-based CRT optimization - What provide new algorithms?
(2011)
Introduction: In cardiac resynchronization therapy (CRT), individual AV delay (AVD) optimization can effectively increase hemodynamics and reduce non-responder rate. Accurate, automatic and easily comprehensible algorithms for the follow-up are desirable. QuickOpt is the first attempt of a semi-automatic intracardiac electrogram (IEGM) based AVD algorithm. We aimed to compare its accuracy and usefulness by in-vitro and in-vivo studies.
Methods: Using the programmable ARSI-4 four-chamber heart rhythm and IEGM simulator (HKP, Germany), the QuickOpt feature of an Epic HF system (St. Jude, USA) was tested in-vitro by simulated atrial IEGM amplitudes between 0.3 and 3.5mV during both, manual and automatic atrial sensing between 0.2 and 1.0mV. Subsequently, in 21 heart failure patients with implanted biventricular defibrillators, QuickOpt was performed in-vivo. Results of the algorithm for VDD and DDD stimulation were compared with echo AV delay optimization.
Results: In-vitro simulations demonstrated a QuickOpt measuring accuracy of ± 8ms. Depending on atrial IEGM amplitude, the algorithm proposed optimal AVD between 90 and 150ms for VDD and between 140 and 200ms for DDD operation, respectively. In-vivo, QuickOpt difference between individual AVD in DDD and VDD mode was either 50ms (20pts) or 40ms (1pt). QuickOpt and echo AVD differed by 41 ± 25ms (7 – 90ms) in VDD and by 18 ± 24ms (17-50ms) in DDD operation. Individual echo AVD difference between both modes was 73 ± 20ms (30-100ms).
Conclusion: The study demonstrates the value of in-vitro studies. It predicted QuickOpt deficiencies regarding IEGM amplitude dependent AVD proposals constrained to fixed individual differences between DDD and VDD mode. Consequently, in-vivo, the algorithm provided AVD of predominantly longer duration than echo in both modes. Accepting echo individualization as gold standard, QuickOpt should not be used alone to optimize AVD in CRT patients.
Introduction: To simplify AV delay (AVD) optimization in cardiac resynchronization therapy (CRT), we reported that the hemodynamically optimal AVD for VDD and DDD mode CRT pacing can be approximated by individually measuring implant-related interatrial conduction intervals (IACT) in oesophageal electrogram (LAE) and adding about 50ms. The programmer-based St Jude QuickOpt algorithm is utilizing this finding. By automatically measuring IACT in VDD operation, it predicts the sensed AVD by adding either 30ms or 60ms. Paced AVD is strictly 50ms longer than sensed AVD. As consequence of those variations, several studies identified distinct inaccuracies of QuickOpt. Therefore, we aimed to seek for better approaches to automate AVD optimization.
Methods: In a study of 35 heart failure patients (27m, 8f, age: 67±8y) with Insync III Marquis CRT-D systems we recorded telemetric electrograms between left ventricular electrode and superior vena cava shock coil (LVtip/SVC = LVCE) simultaneously with LAE. By LVCE we measured intervals As-Pe in VDD and Ap-Pe in DDD operation between right atrial sense-event (As) or atrial stimulus (Ap), resp., and end of the atrial activity (Pe). As-Pe and Ap-Pe were compared with As-LA an Ap-LA in LAE, respectively.
Results: End of the left atrial activity in LVCE could clearly be recognized in 35/35 patients in VDD and 29/35 patients in DDD operation. We found mean intervals As-LA of 40.2±24.5ms and Ap-LA of 124.3±20.6ms. As-Pe was 94.8±24.1ms and Ap-Pe was 181.1±17.8ms. Analyzing the sums of As-LA + 50ms with duration of As-Pe and Ap-LA + 50ms with duration of Ap-Pe, the differences were 4.7±9.2ms and 4.2±8.6ms, resp., only. Thus, hemodynamically optimal timing of the ventricular stimulus can be triggered by automatically detecting Pe in LVCE.
Conclusion: Based on minimal deviations between LAE and LVCE approach, we proposed companies to utilize the LVCE in order to automate individual AVD optimization in CRT pacing.
Message co chairmen
(2017)
Energy and environment continue to be major issues of human mankind. This holds true on the regional, the national, and the global level. And it is one of the problems, where engineers and scientists in conjunction with political will and people's awareness, can find new approaches and solutions to save the natural resources and to make their use more efficient.
The paper proposes a system architecture for charging infrastructure that serves the requirements of future fleets of shared-use electric vehicles in urban scenarios. The focus of the development is on the interfaces to central stakeholders such as mobility service providers, distribution network operators and utilities. The main concept of the proposed system is the adherence to a stringent resource-oriented design approach, following the design principles of the Representational State Transfer (REST) architectural software style for distributed systems. This design approach is used from the cloud-based services down to the implementation of the charging infrastructure's control algorithms. Focusing on the resources of the various entities simplifies the implementation of their interactions, compared to the explicit declaration of services that are available. The system design ensures that the charging infrastructure is open to all users and generates a benefit beyond basic charging operations. Integration in emerging smart markets is done via open web-based interfaces. These allow for the generation of an added value of concrete services for shared-use electric mobility. A link to the field of grid operation is proposed using the ISO/IEC 61850 telecontrol standard. The smart meter capabilities of the charging stations can be used to gain additional information on the current state of the distribution grid. As an exemplary service a load management service for a fleet of shared-use electric vehicles is going to be implemented.
Multi-phase management is crucial for performance and durability of electrochemical cells such as batteries and fuel cells. In this paper we present a generic framework for describing the two-dimensional spatiotemporal evolution of gaseous, liquid and solid phases, as well as their interdependence with interfacial (electro-)chemistry and microstructure in a continuum description. The modeling domain consists of up to seven layers (current collectors, channels, electrodes, separator/membrane), each of which can consist of an arbitrary number of bulk phases (gas, liquid, solid) and connecting interfaces (two-phase or multi-phase boundaries). Bulk and interfacial chemistry is described using global or elementary kinetic reactions. Multi-phase management is coupled to chemistry and to mass and charge transport within bulk phases. The functionality and flexibility of this framework is demonstrated using four application areas in the context of post-lithium-ion batteries and fuel cells, that is, lithium-sulfur (Li-S) cells, lithium-oxygen (Li-O) cells, solid oxide fuel cells (SOFC) and polymer electrolyte membrane fuel cells (PEFC). The results are compared to models available in literature and properties of the generic framework are discussed.
A theoretical description is given for the propagation of surface acoustic wave pulses in anisotropic elastic media subject to the influence of nonlinearity. On the basis of nonlinear elasticity theory, an evolution equation is presented for the surface slope or the longitudinal surface velocity associated with an acoustic pulse. It contains a non-local nonlinearity, characterized by a kernel that strongly varies from one propagation geometry to another due to the anisotropy of the substrate. It governs pulse shape evolution in homogeneous halfspaces and the shapes of solitary surface pulses that exist in coated substrates. The theory describing nonlinear Rayleigh-type surface acoustic waves is extended in a straightforward way to surface waves that are localized at a one-dimensional acoustic waveguide like elastic wedges.
The Division Industrial Chemistry of the Swiss Chemical Society organizes periodically a two-day event for the post-graduate education of its members. This event is known as the Freiburger Symposium. This year it focussed on sustainable chemical production. The twelve talks covered the following aspects: ethical needs for sustainability standards, the required, attained, and yet to be attained sustainability goals in chemical industry. Diverse case studies showed the highly developed awareness about the sustainability issue within the chemical community.
The importance of obtaining simultaneous particle size and concentration values has grown up with continuing discussion of the health effects, of internal combustion engine generated particulate emissions and in particular of Diesel soot emissions. In the present work an aerosol measurement system is described that delivers information about particle size and concentration directly from the undiluted exhaust gas.
Using three laser diodes of different wavelengths which form one parallel light beam, each spectral attenuation is analysed by a single detector and the particle diameter and concentration is evaluated by the use of the Mie theory and shown on-line at a frequency of 1 Hz. The system includes an optical long-path-cell (White principle) with an adjustable path length from 2.5 to 15 m, which allows the analysis within a broad concentration range.
On-line measurements of the particulate emissions in the hot, undiluted exhaust of Diesel engines are presented under stationary and transient engine’s load conditions. Mean particle diameters well below 100 nm are detected for modern Diesel engines. The measured particle concentration corresponds excellently with the traditional gravimetrical measurements of the diluted exhaust. Additionally, measurements of particle emissions (mostly condensed hydricarbons) from a two-stroke engine are presented and discussed.
A simple measuring method for acquiring the radiation pattern of an ultrawide band Vivaldi antenna is presented. The measuring is performed by combining two identical Vivaldi antennas and some of the intrinsic properties of a stepped-frequency continue wave radar (SFCW radar) in the
range from 1.0 GHz to 6.0 GHz. A stepper-motor provided the azimuthal rotation for one of the antennas from 0 ◦ to 360 ◦. The tests have been performed within the conventional environment (laboratory / office) without using an anechoic chamber or absorbing materials. Special measuring devices have not been used either. This method has been tested with different pairs of Vivaldi antennas and it can be also used for different ones (with little or no change in the system), as long as their operational
bandwidth is within the frequency range of the SFCW radar.
Keywords — SFCW Radar, Antenna Gain Characterization,
Azimuthal Radiation Pattern
In this paper, we establish a simple model for the exchange of messages in a vehicular network and we consider fundamental limits on the achievable data rate. For a vehicular network, the exchange of data with other nearby vehicles is particularly important for traffic safety, e.g. for collision avoidance, but also for cooperative applications like platooning. These use cases are currently addressed by standards building on IEEE 802.11p, namely ITS-G5 and DSRC (dedicated short range communication), which encounter saturation problems at high vehicle densities. For this reason, we take a step back and ask for the fundamental limits for the common data rate in a vehicular network. After defining a simple single-lane model and the corresponding capacity limits for some basic multiple- access schemes, we present results for a more realistic setting. For both scenarios, non-orthogonal multiple-access (NOMA) yields the best results.
This paper evaluates the implementation of Medium Access Control (MAC) protocols suitable for massive access connectivity in 5G multi-service networks. The access protocol extends multi-packet detection receivers based on Physical Layer Network Coding (PLNC) decoding and Coded Random Access protocols considering practical aspects to implement one-stage MAC protocols for short packet communications in mMTC services. Extensions to enhance data delivery phase in two- stage protocols are also proposed. The assessment of the access protocols is extended under system level simulations where a suitable link to system interface characterization has been taken into account.