Refine
Year of publication
Document Type
- Conference Proceeding (647) (remove)
Language
- English (486)
- German (159)
- Multiple languages (1)
- Russian (1)
Keywords
- Gamification (9)
- Kommunikation (9)
- Assistive Technology (8)
- Produktion (8)
- Ausbildung (7)
- Design (6)
- Deafblindness (5)
- Eingebettetes System (5)
- Energieversorgung (5)
- Heart rhythm model (5)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (145)
- Fakultät Medien und Informationswesen (M+I) (104)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (80)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (70)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (64)
- ACI - Affective and Cognitive Institute (32)
- INES - Institut für Energiesystemtechnik (25)
- IMLA - Institute for Machine Learning and Analytics (6)
- Zentrale Einrichtungen (6)
Die Geschäftsleitung und Führungskräfte von Eller Repro+Druck beschlossen im Juli 1994 die Teilnahme am damls noch neuen EU-Öko-Audit. Die Durchführung des Audits ist für 1996 geplant. Zwei Diplomanden der FH Offenburg wurde die Möglichkeit gegeben, als externe Berater für Eller Repro+Druck ihre Diplomarbeit über die Vorbereitung zum Öko-Audit zu schreiben. Der Betrieb (170 Mitarbeiter) verfügt über elektronische Bildverarbeitung auf Scitex- und Mac-Schiene, derzeit noch konventionelle Plattenkopie und -entwicklung, fünf Offsetrotationen sowie Weiterverarbeitung mit Sammelheftern und Falzmaschinen. Der Referent berichtet über die Erfahrungen, die sein Unternehmen bis zum Herbst 1995 mit der Vorbereitung zum Öko-Audit gemacht hat, und gibt Praxistips. Zusammen mit den Beratern wurden eine Aufnahme der betrieblichen Situation durchgeführt, Maßnahmen geplant und zum Teil durchgeführt.
The importance of obtaining simultaneous particle size and concentration values has grown up with continuing discussion of the health effects, of internal combustion engine generated particulate emissions and in particular of Diesel soot emissions. In the present work an aerosol measurement system is described that delivers information about particle size and concentration directly from the undiluted exhaust gas.
Using three laser diodes of different wavelengths which form one parallel light beam, each spectral attenuation is analysed by a single detector and the particle diameter and concentration is evaluated by the use of the Mie theory and shown on-line at a frequency of 1 Hz. The system includes an optical long-path-cell (White principle) with an adjustable path length from 2.5 to 15 m, which allows the analysis within a broad concentration range.
On-line measurements of the particulate emissions in the hot, undiluted exhaust of Diesel engines are presented under stationary and transient engine’s load conditions. Mean particle diameters well below 100 nm are detected for modern Diesel engines. The measured particle concentration corresponds excellently with the traditional gravimetrical measurements of the diluted exhaust. Additionally, measurements of particle emissions (mostly condensed hydricarbons) from a two-stroke engine are presented and discussed.
A prototype multiwavelength sensor able to characterise soot emissions in Diesel exhaust in terms of size and concentration has been tested against other methods for diesel particle measurements like electrical mobility sizing (SMPS) and raw exhaust gravimetric sampling (RES). Measurements carried out with the prototype sensor were correlated with the SMPS by assuming spherical and/or fractal aggregate morphology of the particles. Correlation of RES gravimetric data against the sensor and the SMPS led to the calculation of the solid density for soot particles to be 2.3 gr/cm3.
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows many advantages when compared to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. For visualisation of the sample distribution on a HPTLC-plate we developed a new and sturdy HPTLC-scanner. The scanner allows simultaneous registrations of spectra in a range from 198 nm to 612 nm with a spectral resolution of better than 0.8 nm. The on-plate spatial resolution is better than 160 μm. The measurement of 450 spectra in one separation track does not need more than two minutes. The new diode-array scanner offers a fast survey over a TLC-separation and makes various chemometric applications possible. For compound identification a cross-correlation function is described to compare UV sample spectra with appropriate library data. The cross-correlation function herein described can also be used for purity testing. Unresolved peaks can be virtually separated by use of a least squares fit algorithm. In summary, the diode arry system delivers much more information than the commonly used TLC-scanner.
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows a lot of advantages and options in comparison to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. Using fiber-optic elements for controlled light-guiding, the TLC-method was significantly improved: the new HPTLC-system is able to measure simultaneously at different wavelengths without destroying the plate surface or the analytes on the surface. For registration of the sample distribution on a HPTLC-plate we developed a new and sturdy diode-array HPTLC- scanner which allows registration of spectra on the TLC- plates in the range of 198 nm to 610 nm with a spectral resolution better than 1.2 nm. The spatial resolution on plate is better than 160 micrometers . In the spectral mode, the new HPTLC-scanner delivers much more information than the commonly used TLC-scanner. The measurement of 450 spectra of one separation track does not need more than three minutes. However, in the fixed wavelength mode the contour plot can be measured within 15 seconds. In this case, the signal will be summarized and averaged over a spectral range having FWHM from 10 nm to 25 nm depending on the substance under test. The new diode-array HPTLC-scanner makes various chemometric applications possible. The new method can be used easily in clinical diagnostic systems easily, e.g. for blood and uring investigations. In addition, new applications are possible. For example, the rich structured PAHs were studied. Although the separation is incomplete the 16 compounds can be quantified using suitable wavelengths.
Quantitative Bestimmung von Clozapin im Serum mittels Dioden-Array Dünnschichtchromatographie
(2003)
In dieser Arbeit wurde eine USB-Schnittstelle für ein bestehendes Mikrocontroller System FHOP realisiert. Im aktuellen Stand funktioniert das Design zuverlässig in Low Speed Konfiguration. Im Full Speed gibt es noch einige Schwierigkeiten, denn die Kommunikation bricht nach einigen Paket-Transfers zusammen. Durch das Emulieren des Designs auf FPGA wurde die Funktion nachgewiesen. Die nächste Aufgabe wird sein, die Hardware zu optimieren, damit das USB-Modul auch im Full Speed zuverlässig funktioniert. Zusätzlich wird die Software auf der PC Seite optimiert, um höhere Übertragungsraten zu erzielen.
An der Fachhochschule Offenburg wird der Design-Kit FHO_MTC_CMOS_035_v1.0 erstellt. Mit Hilfe dieses Kits lassen sich Designs in der AMI O.35 Mikrometer Technologie entwerfen. Alle durchgeführten Arbeiten werden durch den Entwurf eines Lottozahlengenerator-Chips verifiziert, der gefertigt wird. Damit sind alle wesentlichen Schritte bekannt, die für die Aufbereitung eines Design-Kits für beliebige Technologien für die Mentor-Tools erforderlich sind. Der Design-Kit wird für alle MPC-Mitglieder freigegen, die eine NDA für AMI bei Europractice unterzeichnet haben.
The iSign project started in 2000 as a web-based laboratory setting for students of electrical engineering. In the meantime it has broadened into a heterogeneous learning environment offering learning material, adaptive user settings and access to a simulation tool. All these offerings can be accessed via web and wireless by different clients, such as PCs, PDAs and mobile phones. User adaptive systems offer unique and personalised environment for every learner and therefore are a very important aspect of modern e-learning systems. The iSign project aims to personalise the content structure based on the learner's behaviour, content pattern, policies, and system environment. The second aspect of the recent research and development within this project is the generation of suitable content and presentation for different clients. This generation is based additionally on the user preferences in order to obtain the desirable presentation for a given device. New, valuable features are added to the mobile application, empowering the user not only to control the simulation process with his mobile device but also to input data, view the simulation's output and evaluate the results. Experiences with students have helped to improve functionality and look-and-feel whilst using the iSign system. Our goal is to provide unconstrained, continuous and personalised access to the laboratory settings and learning material everywhere and at anytime with different devices.
In
this paper, a new method is demonstrated for onlin
e remote simulation of photovo
ltaic systems. The required
communication technology for the data exchange is introduced a
nd the methods of PV generato
r parameter extraction for the
simulation models are analysed. The method
shown for parameter extraction from the ma
nufacturer data is especially useful
for the commissioning procedure, where the measured installed pow
er is transferred to standard test conditions using the
simulation model and can then be easily compared with the de
sign power. At a simulation accuracy of 2% using the software
environment INSEL
®
any problems with the PV gene
rator can reliably be detected.
Online simulation of a grid connected PV generator is then
carried out during the operation of the photovoltaic plant. The
visualisation includes both the monitored and
the simulated online data sets, so that a very efficient fault detection scheme i
s
available. The method is implemented and
validated on several grid connected photovolta
ic power plants in Germany. It is
excellently suited to provide automatic and real time fault
detection and significantly impr
ove the commissioning procedure
for photovoltaic plants of all sizes.
Sustainable Aspects force a building manager to continuous observation of actual states and developments concerning building use, energy and media flows.In the presented approach a communication structure was built up to use different software applications and tools in order to optimize the operation of the building.
The Division Industrial Chemistry of the Swiss Chemical Society organizes periodically a two-day event for the post-graduate education of its members. This event is known as the Freiburger Symposium. This year it focussed on sustainable chemical production. The twelve talks covered the following aspects: ethical needs for sustainability standards, the required, attained, and yet to be attained sustainability goals in chemical industry. Diverse case studies showed the highly developed awareness about the sustainability issue within the chemical community.
Non-esterified plant oils gain ecological and economical importance, particularly in the EU where it is intended to increase the share of renewable energies. Plant oils do not require any chemical treatment so do not cause secondary pollution. The importance of plant oil will increase in Germany for mobile and stationary applications. The generation co-generation of heat and power is subsidized by the German “Erneuerbares Energiegesetz” and the “Kraft-Wärme-Kopplungsgesetz” when renewable fuels are used such as plant oils..
Plant oils have a much higher viscosity than conventional gas oil. It is mandatory to decrease the oil viscosity by heating prior to injection to assure proper injection and to avoid engine damage due to coke formation in the combustion chamber and at the injection nozzle. The German quality standard of Weihenstephan (RK-Qualitätsstandard 05/2000) for rape seed oil should be followed for use as diesel fuel. The chemical composition of plant oils is appreciably different in comparison to diesel fuels derived from mineral oils suggesting also different emission behavior.
Particle and Gaseous Emissions of Diesel Engines Fuelled by Different Non-Esterified Plant Oils
(2007)
The particulate matter and gas emissions of several plant oils are analyzed in the hot exhaust gas under various engine conditions at different speeds and loads The measurement data are compared to the emission values of conventional diesel fuel (gas oil). The investigation concentrates on a modern common rail TDI light duty diesel, four cylinders, for passenger cars. The differences in the gas and particulate matter emission - compared to conventional diesel fuel - are remarkably low for the diesel engine which is properly adjusted for the plant oils. Emission data of an old heavy duty diesel engine are also shown for comparison reasons and reveals large differences. Differences are found in the pressures of the indicator diagram, time resolved over the crank angle. Plant oils consistently exhibit a higher cylinder pressure. The TEM investigation confirms the differences found by the LPME (long path multi-wavelength extinction) on-line analysis.
The identification and quantification of compounds in the gas phase becomes of increasing interest in the context of environmental protection, as well as in the analytical field. In this respect, the high extinction coefficients of vapours and gases in the ultraviolet wavelength region allow a very sensitive measurement system. In addition, the increased performance of the components necessary for setting up a measurement system, such as fibres, light sources and detectors has been improved. In particular the light sources and detectors offer improved stability, and the deep UV performance and solarisation resistance of fused silica fibres allow have been significantly optimized in the past years. Therefore a compact and reliable detection system with high measuring accuracy is developed. Within this paper possible applications of the system under development and recent results will be discussed.
The identification and quantification of compounds in the gas phase becomes of increasing interest in the context of environmental protection, as well as in the analytical field. In this respect, the high extinction coefficients of vapours and gases in the ultraviolet wavelength region allow a very sensitive measurement system. In addition, the increased performance of the components necessary for setting up a measurement system, such as fibres, light sources and detectors has been improved. In particular the light sources and detectors offer improved stability, and the deep UV performance and solarisation resistance of fused silica fibres allow have been significantly optimized in the past years. Therefore a compact and reliable detection system with high measuring accuracy is developed. Within this paper possible applications of the system under development and recent results will be discussed.